摘要
Given a system {S1,…, SN} of N contractive similarities satisfying some strong separation condition, it has an invariant Set K for the system. In this article, the authors construct some random measure μω supported on random subset Kω of K, μω having some "non-standard" multifractal structure, which contrasts the well-knoWn multifractal formalism for the invariant measure of system {S1,.., SN} may possess. The main tool is the multifractal structures of a Galton-Watson tree, which are obtained by Liu [9], Shieh-Taylor [14], and MSrters-Shieh [12].
Given a system {S1,…, SN} of N contractive similarities satisfying some strong separation condition, it has an invariant Set K for the system. In this article, the authors construct some random measure μω supported on random subset Kω of K, μω having some "non-standard" multifractal structure, which contrasts the well-knoWn multifractal formalism for the invariant measure of system {S1,.., SN} may possess. The main tool is the multifractal structures of a Galton-Watson tree, which are obtained by Liu [9], Shieh-Taylor [14], and MSrters-Shieh [12].
基金
Both authors are supported by a grant NSC 2002/3-2115-M-002-017.