摘要
该文对一类复指数多项式组成的线性空间M(A)在Banach空间H_α中的不完备性给出了充分必要条件,其中H_α为在半带形I_α={z=x+iy:x≥0,|y|≤α}(α>0)中连续,在I_α的内部解析且当x→∞时,f(x+iy)在I_α中关于y一致地趋向0的函数f(x+iy)全体,其范数为上确界范数.同时指出,如果M(A)在H_α中不完备,则它的闭包cl(M(A))中所有的函数都可以延拓为由Dirichlet级数表示的解析函数。
In this paper, the author obtains a necessary and sufficient condition for the incompleteness of complex exponential polynomials in the Banach space Hα consisting of all continuous functions f on the closed right half strip Iα={z=x+iy:x≥0,|y|≤α}(α〉0), analytic in its interior and such that f(z) vanishing uniformly at infinity. The author also proves that, if some conditions of incompleteness hold, then each function in the closure of the set of complex exponential polynomials can be extended to an analytic function represented by a Dirichlet series.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2007年第3期414-419,共6页
Acta Mathematica Scientia
基金
国家自然科学基金(10371011
10071005)
教育部留学回国人员科研启动基金资助
关键词
指数多项式
不完备性
闭包
Incompleteness
Closure
Exponential polynomials