期刊文献+

一类具有弱增长性的Bolza问题

On a Class of Nonconvex Variational Problems with Slow Growth
下载PDF
导出
摘要 我们考虑最小值问题(P)min{ab∫f(t,u′(t))dt+l(u(a),u(b));u∈AC([a,b],Rn)},其中f:[a,b]×Rn→R∪{+∞}是正规被积函数,l:Rn×Rn→R∪{+∞}下半连续,AC([a,b],Rn)表示从[a,b]到Rn的绝对连续函数空间。我们将证明最小化算子存在的充分条件。 In this paper we Consider the minimization problem (P)min{ab∫f(t,u′(t))dt+l(u(a),u(b));u∈AC([a,b],Rn)},Wheref:[a,b]×Rn→R∪{+∞} is a normal integrand,l:Rn×Rn→R∪{+∞} is a lower semicontinuous function, and AC([a, b ],R^n )denotes the space of absolutely continuous functions from [ a,b ] to R^n .We prove sufficient condition for the existence of minimizers.
机构地区 燕山大学理学院
出处 《长春师范学院学报(自然科学版)》 2007年第1期8-10,共3页 Journal of Changchun Teachers College
关键词 变分积分 非凸问题 非强制性问题 弱增长问题 最小化算子的存在性 calculus of variations nonconvex problems noncoercive problems problems with slow growth existence of minimizers
  • 相关文献

参考文献7

  • 1[1]Ekeland,I.and Temam,R.,Convex Analysis and Variational Problems[J].North-Holland,Amsterdam,Holland,1977.
  • 2[2]Cesari,L.,Optimization-Theory and Applications[J].Springer Verlag,New York,New York,1983.
  • 3[3]Olech,C.,The Lyapunov Theorem:Its Extesions and Applications[J].Methods of Nonconvex Analysis,Springer Verlag,New York,New York,1990.86-103.
  • 4[4]Crasta,G.,An Existence Result for Noncoercive Nonconvex Problems in the Calculus of Variations[J].Nonliear Analysis:Theory,Methods,and Applications,1996,(26):1527-1533.
  • 5[5]Crasta,G.,Existence of Minimizers for Noncoercive Variational Problems with Slow Growth[J].J.O.T.A.,1998,99(2):381-401.
  • 6[6]Crasta,G.On a Class of Nonconvex Noncoercive Bolza Problems with Constraints on the Derivatives[J].J.O.T.A.,2003,118(2):295-325.
  • 7[7]Clarke,F.H.,Optimization and Nonsmooth Analysis[J].Wiley Interscience,New York,New York,1983.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部