摘要
我们考虑最小值问题(P)min{ab∫f(t,u′(t))dt+l(u(a),u(b));u∈AC([a,b],Rn)},其中f:[a,b]×Rn→R∪{+∞}是正规被积函数,l:Rn×Rn→R∪{+∞}下半连续,AC([a,b],Rn)表示从[a,b]到Rn的绝对连续函数空间。我们将证明最小化算子存在的充分条件。
In this paper we Consider the minimization problem (P)min{ab∫f(t,u′(t))dt+l(u(a),u(b));u∈AC([a,b],Rn)},Wheref:[a,b]×Rn→R∪{+∞} is a normal integrand,l:Rn×Rn→R∪{+∞} is a lower semicontinuous function, and AC([a, b ],R^n )denotes the space of absolutely continuous functions from [ a,b ] to R^n .We prove sufficient condition for the existence of minimizers.
关键词
变分积分
非凸问题
非强制性问题
弱增长问题
最小化算子的存在性
calculus of variations
nonconvex problems
noncoercive problems
problems with slow growth
existence of minimizers