期刊文献+

采用贝叶斯方法对矿样分类的研究和实现

采用贝叶斯方法对矿样分类的研究和实现
下载PDF
导出
摘要 本文采用贝叶斯分类法,以金属元素含量对30多个铁矿石样品来源进行分类。研究结果发现,与传统的分类方法相比,贝叶斯分类法对样品来源分类时具有较高的准确度。并且相对于SVM方法要简单。 There are some metal elements of 30 ironstone sample with different origin, Bayesian classification was applied for this purpose. The. results show that the performance of Bayesian classification based on the contents of metal elements is acceptable for specification of the product's geographical origin. And it is easier than SVM classification.
作者 张旭
出处 《科技信息》 2007年第16期93-93,97,共2页 Science & Technology Information
关键词 贝叶斯分类法 铁矿石样品 金属元素 Bayesian classification ironstone sample Metal element
  • 相关文献

参考文献2

二级参考文献8

  • 1Ramoni M, Sebastiami P. Robust bayes classifiers[J]. Artificial Intelligence, 2001, 125(1-2): 209-226.
  • 2Friedman N, Geiger D, Goldszmidt M. Bayesian network classifiers[J]. Machine Learning, 1997, 29: 131-161.
  • 3Pearl J. Probabilistic reasoning in intelligent systems[M]. San Francisco, CA: Morgan Kaufmann, 1988, 117-133.
  • 4Heckerman D, Geiger D, Chickering D M. Learning Bayesian networks: the combination of knowledge and statistical data[J]. Machine Learning, 1995,20:197-243.
  • 5Wang F, Liu DY, Xue WX, et al. Research on learning Bayesian network structure with hidden variables based on genetic algorthms[J]. Chinese Journal Electron, 2002, 11(3): 297-302.
  • 6Neil M, Fenton N, Nielsen L. Building large-scale bayesian networks[J]. The Knowledge Engineering Review, 2000, 15(3):257-284.
  • 7Cheng J, Greiner R, Kelly J, et al. Learning Bayesian networks from data: An information-theory based approach[J]. Artificial Intelligence, 2002, 137, (1-2): 43-90.
  • 8Chickering D M. Learning equivalence classes of bayesian-network structures[J]. Machine Learning, 2002, (2): 445-498.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部