期刊文献+

尿素酶固载于纳米二氧化钛多孔膜上的尿素生物传感器 被引量:6

A Novel Urea Biosensor Based on the Urease Immobilized on Nanoporous TiO_2 Film
下载PDF
导出
摘要 在钛丝基体上沉积一层纳米二氧化钛(TiO2)多孔膜,然后直接将尿素酶吸附在TiO2膜上。基于TiO2膜的pH响应,发展了一种廉价的、易于微型化的pH敏尿素酶传感器。采用石英微天平、红外光谱和紫外可见光谱等手段研究尿素酶在TiO2膜上的物理固载行为。由于纳米TiO2在紫外光下光自洁特性可获得高度洁净的表面,石英微天平研究表明在光自洁后的TiO2膜上尿素酶的吸附具有很好的重复性和稳定性,吸附量为0.22mmol/g,吸附平衡常数k为3.15×10^5L/mol。采用电位法测定了尿素酶/TiO2复合膜电极的性能及其影响因素,在1.0mmol/LpH7-8PBS,35℃,尿素的响应范围为8.5×10^-5-1.5×10^-1mol/L,相关系数r为0.9937,检出限为6×10^-5moL/L。 Based on the pH response of the urease immobilized on the nanoporous TiO2 film, a cheap and miniaturized urease biosensor for urea was developed, The physical immobilization behavior of urease on the TiO2 film was investigated by quartz crystal microbalance(QCM) , FT- IR and UV spectrophotometers, The QCM results showed that the urease adsorbed on the photo self-cleaning nanoporous TiO2 film was very stable and reproducible, The amount adsorbed was O. 22 mmol/g and the adsorption equilibrium constant was 3, 15 × 10^5 L/mol. The performance of the urease/TiO2 electrode and the influencing factors were measured by potentiometry. Under optimum condition, the linear range of the response for urea was 8, 5× 10^-5 - 1.5 ×10^-1 mol/L with a correlation coefficient of 0, 993 7 and a detection limit of 6× 10^-5 mol/L.
出处 《分析测试学报》 CAS CSCD 北大核心 2007年第4期523-525,529,共4页 Journal of Instrumental Analysis
基金 国家自然科学基金资助项目(20475065)
关键词 纳米多孔二氧化钛 酶固定化 尿素酶电极 Nanoporous titanium oxidize Enzyme immobilization Urease electrode
  • 相关文献

参考文献16

  • 1LAKARD B,HERLEM G,LAKARD S,et al.Urea potentiometric biosensor based on modified electrodes with urease immobilized on polyethylenimine films[J].Biosensors and Bioelectronics,2004,19:1641 -1647.
  • 2SEHITOGULLARI A,USLAN A H.Preparation of a potentiometric immobilized urease electrode and urea determination in serum[J].Talanta,2002,57:1039-1044.
  • 3WANG J Q,CHOU J C,SUN T P,et al.pH-based potentiometrical flow injection biosensor for urea[J].Sensors and Actuators B,2003,91:5 -10.
  • 4KURALAY F,OZYORUK H,YILDIZ A.Potentiometric enzyme electrode for urea determination using immobilized urease in pely(vinylferrocenium) film[J].Sensors and Actuators B,2005,109:194-199.
  • 5SAHNEY R,PURI B K,ANAND S.Enzyme coated glass pH-electrode:Its fabrication and applications in the determination of urea in blood samples[J].Anal Chim Acta,2005,542:157 -161.
  • 6LI J,TAN S N,OH J T.Silica sol-gel immobilized amperometric enzyme electrode for peroxide determination in the organic phase[J].Journal of Electroanalytical Chemistry,1998,448:69-77.
  • 7OTZEN DE,OLIVEBERG M,HOOK F.Adsorption of a small protein to a methyl-terminated hydrophobic surfaces:effect of protein-folding thermodynamics and kinetics[J].Colloids and Surfaces B:Biointerfaces,2003,29:67-73.
  • 8KIM J,GRATE J W,WANG P.Nanostructures for enzyme stabilization[J].Chemical Engineering Science,2006,61:1017-1026.
  • 9OGURA K,NAKAOKA K,NAKAYAMA M,et al.Thermogravimetry/mass spectrometry of urease-immobilized sol-gel silica and the application of such a urease-modified electrode to the potentiometric determination of urea[J].Anal Chim Acta,1999,384:219-225.
  • 10PARK S,BOO H,KIM Y,et al.pH-sensitive solid state electrode based on electrodeposited nanoporous platinum[J].Anal Chem,2005,77:7695 -7701.

二级参考文献19

  • 1Litter M I. Heterogeneous photocatalysis: transition metal ions in photocatalytic systems[J]. Appl Catal B, 1999, 23(2): 89-114.
  • 2Namasivayam C, Periasamy K. Bicarbonate-treated peanut hull carbon for mercury (Ⅱ) removal from aqueous solution[J]. Water Res, 1993, 27(11): 1663-1668.
  • 3Osteen A B, Bibler J. Treatment of radioactive laboratory waste for mercury removal[J]. Water Air Soil Pollut, 1991, 56(1): 63-74.
  • 4Ghazy S E. Removal of cadmium, lead, mercury, tin,antimony, and arsenic from prinking and seawaters by colloid precipitate flotation [J]. Sep Sci Technol,1995, 30(3): 933-947.
  • 5Fox M A, Dulay M T. Heterogeneous photocatalysis[J]. Chem Rev, 1993, 93(1): 341-357.
  • 6Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surface: principles mechanisms and selected results[J]. Chem Rev, 1995, 95(3): 735 - 758.
  • 7MA Shu-zhen, LIAO Fu-hui, XU Ming-yuan, et al.Effect of microstructure, grain size, and rare earth doping on the electrorheological performance of nanosized particle materials[J]. J Mater Chem, 2003, 13 (12):3096 - 3102.
  • 8Calatayud M, Markovits A, Menetrey M, et al. Adsorption on perfect and reduced surfaces of metal oxides[J]. Catalysis Today, 2003, 85(2): 125- 143.
  • 9Raskó J, Kecskés T, Kiss J. Adsorption and reaction of formaldehyde on TiO2-supported Rh catalysts studied by FTIR and mass spectrometry[J]. J of Catalysis, 2004, 226(1): 183-191.
  • 10JIANG Dian-lu, ZHAO Hui-jun, ZHANG Shanqing, et al. Photoelectrochemical measurement of phthalic acid adsorption on porous TiO2 film electrodes[J]. J of Photochemistry and Photobiology A:Chemistry, 2003, 156(3): 201-206.

共引文献6

同被引文献86

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部