期刊文献+

核空间中的Xie-Beni指标及其性能 被引量:9

Kernelized Xie-Beni index and its performance
下载PDF
导出
摘要 针对核空间中模糊聚类算法的有效性评价问题,以核非线性映射为工具,将Xie-Beni指标推广到核Hilbert空间,得到其对应的核化形式,并指出该核化指标与VLL指标的区别和联系.在此基础上,通过比较实验,研究了核化的Xie-Beni指标对高斯核宽度β和模糊指数m的稳定特性.结果表明,核化的Xie-Beni指标较之VLL等其他指标具有更好的性能和可靠性,可优先作为核模糊聚类算法的有效性判据. With the help of the nonlinear mapping defined by kernel function implicitly, the noted Xie-Beni index for fuzzy c-means clustering is generalized into the kernel-defined Hilbert space. And the relation between the kernelized version of Xie-Beni and another index VLL is also investigated. Then, the performances and the dependencies of these two indices on Gauss kernel-width β and fuzzy exponent m are examined by some benchmark experiments, compared with two previously formulated indices, partition coefficient and partition entropy. The results show the superior performance and reliability of the kernelized Xie-Beni index in comparison to other indices, and it can take priority of being employed as the validity criterion for the kernel fuzzy clustering algorithm.
出处 《控制与决策》 EI CSCD 北大核心 2007年第7期829-832,835,共5页 Control and Decision
基金 国家自然科学基金项目(60572143) 国家电子对抗技术预研基金项目(NEWL51435QT220401).
关键词 核模糊聚类 Xie-Beni指标 聚类有效性 Kernel fuzzy clustering Xie-Beni index Cluster validity
  • 相关文献

参考文献7

  • 1Kim D-W,Lee K Y,Lee D.et al.Evaluation of the performance of clustering algorithms in kernel-induced feature space[J].Pattern Recognition,2005,38(4):607-611.
  • 2李侃,刘玉树.模糊核聚类的自适应算法[J].控制与决策,2004,19(5):595-597. 被引量:9
  • 3Wu Z D.Xie W X,Yu J P.Fuzzy C-means clustering algorithm based on kernel method[C].Proc of the 5th Int Conf on Computational Intelligence and Multimedia Applications.Xi'an:IEEE Computer Society,2003:1-6.
  • 4Kim D-W,Lee K H,Lee D.On cluster validity index for estimation of the optimal number of fuzzy clusters[J].Pattern Recognition,2004,37(10):2009-2025.
  • 5Xu R,Wunsch Ⅱ D C.Survey of clustering algorithms[J].IEEE Trans on Neural Networks,2005,16(3):645-678.
  • 6Pal N R.Bezdek J C.On clustering for the fuzzy Cmeans model[J].IEEE Trans on Fuzzy Systems,1995,3(3):370-379.
  • 7Newman D J.Hettich S,Blake C L,et al.UCI repository of machine learning databases[DB/OL].Irvine,University of California,Department of Information and Computer Science.(1995-02-17).http://www.ics.uci.edu/~mlearn/MLRepository.html.

二级参考文献5

  • 1[1]MacQueen J. Some methods for classification and analysis of multivariate observations [ A ]. Proc 5th Berkeley Symposium in Mathematics, Statistics,Probbability[C]. California, 1967. 281-297.
  • 2[2]Bezdek JC. Pattern Recognition with Fuzzy Objective Function Algorithms [M]. New York: Plenum Press,1981.
  • 3[3]Scholkopf B, Mika S ,Burges C, et al. Input space versus feature space in kernel-based methods[J]. IEEE Trans on Neural Networks,1999,10(5):1000-1017.
  • 4[4]Kamel S Mohamed. New algorithms for solving the fuzzy c-means clustering problem [ J ]. Pattern Recognition, 1994,27 (3): 421-428.
  • 5[5]Girolami M. Mercer kernel based clustering in feature space[J]. IEEE Trans on Neural Network, 2002,13(3):780-784.

共引文献8

同被引文献75

引证文献9

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部