期刊文献+

参数不确定统一混沌系统的脉冲控制 被引量:3

Impulsive Control of Unified Chaotic System with Parameter Uncertainty
下载PDF
导出
摘要 针对一类参数不确定的统一混沌系统,提出一种脉冲控制方法.该方法采用系统状态变量的线性反馈作为脉冲控制信号,来实现统一混沌系统的全局渐近稳定,同时给出了统一混沌系统新的全局渐近稳定判据,并对其进行了扩展,与现有的研究结果相比,降低了全局渐近稳定条件的保守性.该方法所设计的控制器结构简单,易于实现,且响应速度快,可为保密通信与混沌载波信号扩展谱等应用提供坚实的理论基础,理论分析和仿真结果验证了方法的有效性. An impulsive control scheme for a class of unified chaotic systems with parameter uncertainty is proposed using the linear state feedback as the signal to realize the global asymptotic stability, In addition, some new global asymptotic criteria and their extended forms are presented, Compared with the existing results, less conservative conditions are obtained to guarantee the global asymptotic stability. The controller thus designed is simple and easy to implement at high response speed and available to lay down a theoretical foundation for the applications in chaotic secure communication systems and chaotic spread spectrum of carrier communications. The effectiveness of the method proposed is verified theoretically and simulatively.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第7期917-920,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60325311605340106057207060521003) 长江学者和创新团队发展计划项目
关键词 统一混沌系统 脉冲控制 参数不确定Lyapunov函数 全局渐近稳定 unified chaotic system impulsive control parameter uncertainty Lyapunov function global asymptotic stability
  • 相关文献

参考文献10

  • 1Yassen M T.Chaos control of chaotic dynamical systems using backstepping design[J].Chaos Solitons and Fractals,2006,27(2):537-548.
  • 2Guan X P,Feng G,Chen C L.A stabilization method of chaotic systems based on full delayed feedback controller design[J].Physics Letters A,2006,348(3/4/5/6):210-221.
  • 3黄玮,张化光.一类混沌系统的同步脉冲控制[J].东北大学学报(自然科学版),2004,25(11):1027-1029. 被引量:4
  • 4Sun J T,Zhang Y P,Wang L,et al.Impulsive robust control of uncertain Luré systems[J].Physics Letters A,2002,304(5/6):130-135.
  • 5Chen S H,Yang Q,Wang C P.Impulsive control and synchronization of unified chaotic system[J].Chaos Solitons and Fractals,2004,20(4):751-758.
  • 6Chen D L,Sun J T,Huang C S.Impulsive control and synchronization of general chaotic system[J].Chaos Solitons and Fractals,2006,28(1):213-218.
  • 7Ren Q S,Zhao J Y.Impulsive synchronization of coupled chaotic systems via adaptive-feedback approach[J].Physics Letters A,2006,355(4/5):342-347.
  • 8Wang Y W,Guan Z H,Xiao J W.Impulsive control for synchronization of a class of continuous systems[J].Chaos,2004,14(1):199-203.
  • 9Li C D,Liao X F,Zhang R.Impulsive synchronization of nonlinear coupled chaotic systems[J].Physics Letters A,2004,328(1):47-50.
  • 10Lü J H,Chen G R,Cheng D Z,et al.Bridge the gap between the Lorenz system and Chen system[J].International Journal of Bifurcation and Chaos,2002,12(12):2917-2926.

二级参考文献11

  • 1[6]Chen S H, Lü J H. Synchronization of an uncertain unified chaotic system via adaptive control[J]. Chaos, Solitons & Fractals, 2002,14(4):643-647.
  • 2[8]Yang T, Yang L B, Yang C M. Impulsive synchronization of Lorenz systems[J]. Physics Letters A, 1997,226(6):349-354.
  • 3[9]Sun J T, Zhang Y P, Wu Q D. Impulsive control for the stabilization and synchronization of Lorenz systems[J]. Physics Letters A, 2002,298(2-3):153-160.
  • 4[10]Chen S H, Yang Q, Wang C P. Impulsive control and synchronization of unified chaotic system[J]. Chaos, Solitons & Fractals, 2004,20(4):751-758.
  • 5[11]Wang Y W, Guan Z H, Xiao J W. Impulsive control for synchronization of a class of continuous systems[J]. Chaos, 2004,14(1):199-203.
  • 6[12]Sun J T, Zhang Y P, Qiao F, et al. Some impulsive synchronization criterions for coupled chaotic systems via unidirectional linear error feedback approach[J]. Chaos, Solitons & Fractals, 2004,19(5):1049-1053.
  • 7[1]Pecora L M, Carroll T L. Synchronization in chaotic system[J]. Phys Rev Lett, 1990,64(8):821-824.
  • 8[2]Yang X S, Duan C K, Liao X X. A note on mathematical aspects of drive-response type synchronization[J]. Chaos, Solitons & Fractals, 1999,10(9):1457-1462.
  • 9[3]Lü J H, Zhou T S, Zhang S C. Chaos synchronization between linearly coupled chaotic systems[J]. Chaos, Solitons & Fractals, 2002,14(4):529-541.
  • 10[4]Bai E W, Lonngren K E. Sequential synchronization of two Lorenz systems using active control[J]. Chaos, Solitons & Fractals, 2000,11(7):1041-1044.

共引文献3

同被引文献35

  • 1刘芬,王仁明,李寒生,曾晓.统一混沌系统的脉冲切换控制[J].中原工学院学报,2006,17(2):46-48. 被引量:1
  • 2陈贵词,张芙蓉.一类不确定时滞系统的脉冲控制[J].武汉科技大学学报,2006,29(5):517-519. 被引量:1
  • 3Yassen M T. Chaos control of chaotic dynamical systems using back stepping design [J ] . Chaos Solitons and Fractals, 2006, 27 (2) :537-548.
  • 4Sun J T, Zhang Y P , Wang L , et al . Impulsive robust control of uncertain Lure systems [ J ] . Physics Letters A, 2002, 304 (5/ 6) :130-135.
  • 5Chen D L , Sun J T , Huang C S. Impulsive control and synchronization of general chaotic system [J ] . Chaos Solitons and Fractals, 2006, 28 (1) :213-218.
  • 6LuJ H ,Chen G R , Cheng D Z , et al . Bridge the gap between the Lorenz system and Chen system [J] .International Journal of Bifurcation and Chaos , 2002 , 12(12) :2917-2926.
  • 7Lakshmikantham V, Bainov D D, Semieonov P S. Theory of Impulsive Differential Equations [M]. Singapore: World Scientific, 1989.
  • 8王雪梅,王帅.统一混沌系统及其在安全通信中的应用[J].微计算机信息,2007(05X):57-58. 被引量:3
  • 9LorenzEN. Deterministien on perodie flow[J] .Journal of the Atmospheric Sciences, 1963,20(5): 130-141.
  • 10Slotine J J, Li W P. Applied nonlinear control[M]. USA: PrentieeHall, 1991.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部