期刊文献+

锂离子电池用“三明治”型Si/Fe/Si薄膜负极材料的制备及其性能 被引量:4

Preparation and Properties of Sandwich-type Si/Fe/Si Film Anode for Lithium-ion Battery
下载PDF
导出
摘要 采用磁控溅射法在铜箔集流体上沉积得到了具有“三明治”结构的Si/Fe/Si薄膜.高分辨率透射电镜(HRTEM)和选区电子衍射(SAED)分析表明,该薄膜为非晶态.扫描电镜(SEM)和能量散射X射线能谱(EDXS)结果表明,该薄膜循环前总厚度为3.2"m,循环200周后体积膨胀率为265%.在1.5-0.005V(vsLi+/Li)和0.1mA·cm-2条件下,该薄膜电极首次吸锂量为1.85mAh·cm-2,70周后放锂量达最大值0.84mAh·cm-2,200周后放锂量仍维持在0.55mAh·cm-2,为最高放锂量的66%.惰性材料铁的加入一方面提高了薄膜的导电性和电极的面积比容量,有效抑制了电压滞后效应;另一方面有效抑制了活性物质硅的体积膨胀,保持了薄膜较好的循环充、放电性能. A sandwich-type Si/Fe/Si film was deposited on Cu foil by magnetron sputtering. High-resolution transmission electron microscope (HRTEM) and selected area electron diffraction (SAED) results indicated that the sputtered film had an amorphous structure. The cross-sectional scanning electron microscope (SEM) images and the energy dispersive X-ray spectrometry (EDXS) spectra showed that the thickness of the film was 3.2 μm, and its volume expansion ratio was up to 265% after the prolonged electrochemical lithiation and delithiation cycles. In the potential range 1.5-0.005 V (vs Li^*/Li) at the current density of 0.1 mA·cm^-2, the film anode exhibited a high initial lithiation capacity around 1.85 mAh ·cm^-2, and reached the highest reversible delithiation capacity of 0.84 mAh ·cm^-2 after 70 cycles. After 200 cycles, it still retained a reversible capacity of 0.55 mAh ·cm^-2, which was 66% of the highest reversible capacity. The introduction of Fe to Si not only improved the conductivity of the film, which partially reduced the voltage hysteresis, but also effectively suppressed the volume expansion, which led to a prolonged cycle life.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2007年第7期1065-1070,共6页 Acta Physico-Chimica Sinica
关键词 锂离子电池 负极材料 磁控溅射 三明治结构 Si/Fe/Si薄膜 Lithium-ion battery Anode material Magnetron sputtering Sandwich-type structure Si/Fe/Si film
  • 相关文献

参考文献20

  • 1Beaulieu, L. Y.; Hewitt, K. C.; Turner, R. L.; Bonakdarpour, A.; Abdo, A. A.; Christensen, L.; Eberman, K. W.; Krause, L. J.; Dahn,J. R. J. Electrochem. Soc., 2003, 150(2): A149
  • 2任宁,尹鸽平,左朋建,仝钰进,程新群,史鹏飞.锂离子电池硅-锰复合材料的电化学性能[J].无机化学学报,2005,21(11):1677-1681. 被引量:8
  • 3Jeong, G. J., Kim, Y. U.; Sohn, H. J.; Kallg, T. J. Power Sources, 2001, 101:201
  • 4Li, Q. F.; Bjerrum, N. J. J. Power Sources, 2002, 110:1
  • 5王忠,田文怀,李星国.Sn-Sb合金的氢电弧等离子体法制备及其电化学性能[J].物理化学学报,2006,22(6):752-755. 被引量:12
  • 6Ohara, S.; Suzuki, J.; Sekine, K.; Sekine, K.; Takamura, T. J. Power Sources, 2004, 136:303
  • 7Lee, K. L.; Yung, J.Y.; Lee, S. W.; Moon, H. S.; Park, J. W. J. Power Sources, 2004, 129:270
  • 8Maranchi, J. P.; Hepp, A. F.; Kumta, P. N. Electrochem.Solid-State Lett., 2003, 6(9): A198
  • 9Yang, J.; Winter, M.; Besenhard, J. O. Solid State Ion., 1996, 90: 281
  • 10Fleischauer, M. D.; Topple, J. M.; Dahn, J. R. Electrochem. Solid- State Lett., 2005, 8(2): A137

二级参考文献28

  • 1王忠,黄玲,田文怀,李星国.Ni_3Al纳米颗粒的氢电弧等离子体合成及表征[J].云南大学学报(自然科学版),2005,27(S1):56-59. 被引量:2
  • 2闫俊美,黄惠贞,张静,杨勇.锂离子电池硅化物及其复合负极材料的研究[J].电化学,2005,11(4):416-419. 被引量:5
  • 3Wu Y P, Dahm E, Holze R. Journal of Power Sources, 2003,114:228~236.
  • 4Idota Y, Kubota T, Matsufuji A, et al. Science, 1997,276:1395~1397.
  • 5Winter M, Besenhard J O. Electrochimica Acta, 1999,45:31~50.
  • 6Wu X, Wang Z, Chen L Q, Huang X J. ElectrochemistryCommunications, 2003,5:935~939.
  • 7Bourderau S, Brousse T, Schleich D M. Journal of Power So urces, 1999,81~82:233~236.
  • 8Jung H, Park M, Yoon Y, et al. Journal of Power Sources,2003,115:346~351.
  • 9Junga H, Parka M, Hee S, et al. Solid State Communications, 2003,125:387~390.
  • 10Takamura T, Ohara S i, Uehara M, et al. Journal of Power Sources, 2004,129:96~100.

共引文献32

同被引文献67

  • 1文钟晟,谢晓华,王可,杨军,解晶莹.锂离子电池中高容量硅铝/碳复合负极材料的制备与性能研究[J].无机材料学报,2005,20(1):139-143. 被引量:16
  • 2张勇,刘畅,李峰,成会明.纳米碳管结构差异对树脂炭包覆硅/纳米碳管复合材料电化学性能的影响[J].新型炭材料,2006,21(4):307-314. 被引量:5
  • 3Liu Y,Wen Z Y,Wang X Y,et al.Electrochemical behaviors of Si/C composite synthesized from F-containing precursors[J].J Power Sources,2009,189 (1):733-737.
  • 4Veluchamy A,Doh C H,Kim D H,et al.Improvement of cycle behaviour of SiO/C anode composite by thermochemically generated Li4SiO4 inert phase for lithium batteries[J].J Power Sources,2009,188 (2):574-577.
  • 5Zhao J,Wang L,He X,et al.A Si-SnSb/pyrolytic PAN composite anode for lithium-ion batteries[J].Electrochim Acta,2008,53 (24):7048-7053.
  • 6Kang Y M,Park M S,Lee J Y,et al.Si-Cu/carbon composites with a core-shell structure for Li-ion secondary battery[J].Carbon,2007,45(10):1928-1933.
  • 7Li M,Qu M,He X,et al.Effects of electrolytes on the electrochemical performance of Si/graphite/disordered carbon composite anode for lithium-ion batteries[J].Electrochim Acta,2009,54(19):4506-4513.
  • 8Guo Z P,Jia D Z,Yuan L,et al.Optimizing synthesis of silicon-disordered carbon composites for use as anode materials in lithium-ion batteries[J].J Power Sources,2006,159 (1):332-335.
  • 9Chen L,Xie X,Wang B,et al.Spherical nanostructured Si-C composite prepared by spray drying technique for lithium ion batteries anode[J].Materials Science and Engineering:B,2006,131(1-3):186-190.
  • 10Hasegawa T,Mukai S R,Shirato Y,et al.Preparation of carbon gel microspheres containing silicon powder for lithium ion battery anodes[J].Carbon,2004,42(12-13):2573-2579.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部