期刊文献+

改进自动微分方法及其在飞行器气动外形优化中的应用 被引量:4

Fast Automatic Differentiation and Its Application to Flight Vehicle Parameter Optimization
下载PDF
导出
摘要 在飞行器设计优化过程中存在大量的梯度计算,简单高效的梯度计算方法可以很大地提高飞行器的优化效率。自动微分法是一种无需人工干预的高效梯度算法,为了进一步提高自动微分方法的计算效率,在函数首次执行后,形成单独的梯度计算过程,并采用矩阵的方式对该过程进行存储和调用。应用改进后的自动微分程序对某飞行器的弹翼外形进行基于梯度的优化,计算结果表明,改进后的程序计算精度与传统方法相同,计算速度可提高2倍以上,对于工程中常见的大规模稀疏问题计算效率可高达传统算法的3倍左右。 Aim. Traditional automatic differentiation (AD) method is widely used in the optimization of flight vehicle parameters but, in our opinion, it is deficient in speed. We now present a fast AD, called by us improved automatic differentiation (lAD). In the full paper, we explain our IAD in detail. In this abstract, we just add some pertinent remarks to listing the two topics of explanation. The first topic is: traditional AD. The second topic is: our IAD. In the second topic, the most important thing is eq. (4) in the full paper, which is expressed in matrix form and which marks clearly the difference between IAD and traditional AD; the proper utilization of eq. (4) is mainly responsible for making IAD fast through the reduction of time consumed in making very frequent calculations of gradients. Finally we apply our IAD method to the optimization of the parameters of a missile wing. The numerical results are summarized in one table and three figures in the full paper. These numerical results do show preliminarily that our IAD method, as compared with traditional AD method, can reduce the time of calculations of gradients by about 50-65% while retaining the same accuracy.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2007年第3期398-401,共4页 Journal of Northwestern Polytechnical University
关键词 梯度 自动微分 优化 飞行器 gradient, automatic differentiation (AD), optimization, flight vehicle
  • 相关文献

参考文献6

  • 1Cacuci D G.Extension to Additional Classes of Responses.J Math Phys,1981,22(12):2794-2802
  • 2Veley E D.Optimization in the Adaptive Modeling Language.AIAA-98-4872
  • 3Werbos P.Beyond Regression:New Tools for Prediction and Analysis in the Behavioral Sciences.Committee on Appli-ed Mathematics,Boston:Harvard University,1974
  • 4张海斌,钟萍,张春华.应用自动微分的Newton-PCG算法(英文)[J].运筹学学报,2003,7(1):28-38. 被引量:2
  • 5Hovland Dennis Paul.Automatic Differentiation of Parallel Programs:[Ph D Thesis].Urbana:University of Illinois,1997
  • 6李翔,仲卫涛,钱积新.化工过程优化中的自动微分法[J].石油学报(石油加工),2001,17(6):79-83. 被引量:3

二级参考文献12

  • 1Shao Zhj,化工学报,1997年,48卷,1期,46页
  • 2Wolbert D,Computers and Chemical Engineering,1994年,18卷,12期,1083页
  • 3Deng, N. Y. and Wang, Z. Z., CanNewton Method be Surpassed, .Chinese Science Bulletin,43(1999), 132-134.
  • 4Deng, N. Y. and Wang, Z. Z., Theoretical Effciency of an Inexact Newton Method,Journal of Optimization Theory and Applications, 105(2000), 97-112.
  • 5Griewank, A., Evaluating Derivatives Principles and Techniques of AlgorithmicDifferentiation, Frontiers in Applied Mathematics 19, SIAM, Philadephia, 2000.
  • 6More, J.J., Garbow, B.S. and Hillstrom, K.E., Testing unconstrained optimizationsoftware,ACM Transaction on Mathematical Software, 7(1981), 17-41.
  • 7Nash, S. G., A Survey of Truncated Newton Methods, Journal of Computational andApplied Mathematics, 124(2000), 45-59.
  • 8Ortega, J. M. and Rheinboldt, W. C. Iterative Solution of Nonlinear Equations inSeveral Variables, Academic Press, London, 1970.
  • 9Ostrovskii, G. M., Volin, Y. M., and Borisov, W. W., Uber die Berechnung yonAbleitungen,Wissenschaftliche Zeitschrift der Technischen Hochschule für Chemie13(1971), 382-384.
  • 10Steihaug, T., The Conjugate Gradient Method and Trust Region in Large ScaleOptimization,SIAM Journal on Numerical Analysis, 20(1983), 626-637.

共引文献3

同被引文献34

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部