期刊文献+

欧式幂期权定价中隐含标准差的统计特征

The Statistical Properties of Implied Standard Deviation Inferred from European Options with Powers
原文传递
导出
摘要 首先将欧式看涨幂期权定价公式展成Taylor级数,得到幂期权的近似无偏估计.然后通过蒙特卡罗方法进行实验,从幂期权近似估计的分布中推出隐含标准差的分布特征.并改变期权中幂的值或执行价格的值,得到隐含标准差的期望和方差等统计特征. This paper first formed an approximately unbiased estimator for the European options with powers, using Taylor series. Then we derived the distributional properties of implied standard deviation from the distributional properties of the option. And also, we obtained the statistical properties of the expected values and variances of implied standard deviations, while changing the powers or striking prices. The Mone Carlo results favor that.
作者 雷玮 吴纪桃
出处 《数学的实践与认识》 CSCD 北大核心 2007年第13期47-51,共5页 Mathematics in Practice and Theory
关键词 幂期权定价 隐含标准差 期望 方差 分布特征 european options with powers implied standard deviations expectations variances distributional properties
  • 相关文献

参考文献13

  • 1王亚军,周圣武,张艳.基于新型期权—欧式幂期权的定价[J].甘肃科学学报,2005,17(2):21-23. 被引量:13
  • 2陈万义.幂型支付的欧式期权定价公式[J].数学的实践与认识,2005,35(6):52-55. 被引量:26
  • 3田存志.幂函数族之权证创新及定价:一种基于鞅定价的分析方法[J].预测,2004,23(4):69-71. 被引量:14
  • 4曹扬慧.期权隐含波动率的估计方法[J].商场现代化,2005(10X):288-288. 被引量:2
  • 5Manaster. Koehler, The calculation of implied variances from the Black-Scholes model[J]. A Note Journal of Finance. 1982.8 (1): 227-230.
  • 6Brenner M. Subrahmauyam M. A simple formula to compute the implied standard deviation [J]. Financtal Analysis Journal. 1988.44 (5) : 80-83.
  • 7Butler J S, Barry Schachter. The statistical properties of parameters inferred from the Black-Scholes formula[J]. International Review of Financial Analysis, 1996,5(3) :223-235.
  • 8Mohammed. Chaudhury M. An approximately unbiased estimator for the theoretical Black-Scholes european call valuation[J]. Bulletin of Economic Research,1989.41(2):137-146.
  • 9Butler J. Schacher B. Unbiased estimation of the Black-Scholes formula[J]. Journal of Financial Economics. 1986.15(3):341-357.
  • 10Boyle P. Ananthanarayanan A. The impact of variance estimation in option valuation models[J]. Journal of Financial Economics,1977,5(3):375-387.

二级参考文献13

  • 1Robert Tompkins,陈宋生,崔宏,刘锋译.Options Explained.北京:经济管理出版社,2004..
  • 2John C,Hull..Options,Futures,and Other Derivatives..北京:清华大学出版社,,2003....
  • 3Oksendal O. A Short Introduction to Mathematical Finance[M]. Preprints, Dept of Mathematics, University of Oslo, Norway.
  • 4Ross S M. An Elementary Introduction to Mathematical Finance, (second ed. )[M]. Cambridge University Press,2003.
  • 5Hull J C. Options, Futures, and Other Derivatives, (第4版)[M].北京:清华大学出版社,2001.
  • 6Hull. Options, future and other derivatives[M]. Prentice-Hall International Inc, 1997.
  • 7Black, Scholes. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973,81:637-659.
  • 8Merton. The theory of rational option pricing[J]. Bell Journal of Economics and Management Science, 1973,4:141-183.
  • 9Harrison, Kreps. Martingales and arbitrage in multiperiod securities markets [J]. Journal of Economic Theory,1979,20: 381-408.
  • 10Geman, Karaoui, Rocher. Changes of numeraire, change of probability measure and option pricing[J]. Journal of Applied Probability, 1995,32:443-458.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部