期刊文献+

全对策的边际贡献值 被引量:2

An Marginal Contribution Value for Global Games
原文传递
导出
摘要 全对策是定义在局中人集合的所有分划集上的一类特殊合作对策.本文在效用可转移情形下研究全对策的"值"问题.定义了全对策的边际贡献值,得出全对策的Shapley值,以及具有某些性质的值是边际贡献值,并给出两种边际贡献值的具体表达式,及其一些性质. Global game is a kind of cooperative game defined on partitions of the set of players. The payoffs for players are defined for all players together. In this paper we discuss the values for global games under the situation that the utility is transferable. An marginal contribution value for global games is defined. We prove that the Shapley value and some values with some qualities are marginal contribution values. Two different marginal contribution values and some qualities about them are given.
作者 纪凤辉 王艳
出处 《数学的实践与认识》 CSCD 北大核心 2007年第13期124-128,共5页 Mathematics in Practice and Theory
基金 河北省自然科学基金(A2005000301)
关键词 效用可转移对策 全对策 分划 边际贡献值 transferable utility game global game partition lattice marginal contribution value
  • 相关文献

参考文献6

  • 1Gilboa I, Lehrer E. Global games[J]. International Journal of Game Theory,1991, (20):129-147.
  • 2左孝凌,李为锚,刘永才.离散数学[M].上海:上海科学技术文献出版社,1997,(第23次):231-252.
  • 3Francesc Carreras. Josep Freixas, etc. Semivalues as power indices[J]. European Journal of Operational Research, 2003,149 : 676-687.
  • 4Chih-Ru Hsiao. On the asymmetric shapley value for cooperative games[J]. Southeast Asian Bulletin of Mathematics, 2002,26: 413-420.
  • 5Zhang Shengkai, Gong Xinglong. ZS-Value for random coalition games[J]. ChineseScience Bulletin,1989.34(15): 1236-1242.
  • 6Richard P Stanley. Enumerative Combinatorics (Volume 1)[M]. Cambridge University Press, 1997, 33-40.

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部