摘要
假设E为一致凸Banach空间,K为E的非空闭凸子集且为E的非扩张收缩,P为非扩张收缩映像.{Ti:i=1,2,…,N}:K→E为非扩张映像且F(T)=∩ from i=1 to N F(Ti)≠■.定义{xn}如下:x0∈K,xn=P(αnxn-1+(1-αn)TnP[βnxn-1+(1-βn)Tnxn]),n≥1,这里{αn},{βn}为[δ,1-δ]中的实序列,其中δ∈(0,1).若{Ti:i=1,2,…,N}满足条件(B),则{xn}强收敛于x*∈F(T).
Suppose K is a nonempty closed convex nonexpansive retract of a uniformly convexBanach space E with P as a nonexpansive retraction.Let {Ti:i=1,2,…,N}:K→E be N nonexpansive mappings with F(T)=∩^N i=1 F(Ti)≠0. Define a sequence {xn} as follows;
x0∈K,xn=P(αnxn-1+(1-αn)TnP[βnxn-1+(1-βn)Tnxn]),n≥1,where{αn},{βn}are real sequences in [δ,1-δ]for some δ∈(0,1).If{Ti:i=1,2…,N} satisfy the condition (B), the strong convergence of (xn} to some point x^* ∈ F(T) is obtained.
出处
《数学的实践与认识》
CSCD
北大核心
2007年第13期144-149,共6页
Mathematics in Practice and Theory
基金
国家自然科学基金(10471033)