期刊文献+

φ-强伪压缩映象隐迭代过程的收敛性分析

Convergence Analysis of an Implicit Iteration Process for φ-Strictly Psueudocontractive Mappings
原文传递
导出
摘要 在任意Banach空间讨论了有限个φ-强伪压缩映射族隐迭代过程的收敛性问题.利用φ的性质和迭代过程本身的特性,得到了隐迭代过程收敛于公共不动点的若干结果.这些结果补充和推广了过去的研究成果.因此它丰富和发展了隐迭代法的理论. We discuss the convergence problems of an implicit iteration process for finite family of φ-strictly pseudocontractive mappings in arbitrary Banach space. Using the property of φ and self iteration process, some results are obtained, which are the implicit iteration process converges to a common fixed points. The results obtained in this paper represent an extension as well as improvement of well-known results. Hence the theory and methods of an implicit iteration are enriched and developed.
出处 《数学的实践与认识》 CSCD 北大核心 2007年第13期150-155,共6页 Mathematics in Practice and Theory
基金 教育部科学技术研究重点项目(207014) 河北省自然科学基金资助项目(A2006000941)
关键词 φ-强伪压缩映射 隐迭代过程 具有误差的隐迭代过程 公共不动点 收敛性定理 φ-strictty pseudocontractive Mappings implicit iteration process implicititeration process with errors common fixed points convergence theorems
  • 相关文献

参考文献12

  • 1Kato T. Nonlinear semigroups and evolution equations[J]. J Math Soc Japan. 1964.19: 508-520.
  • 2曾六川.Banach空间中关于增生算子方程的迭代法的强收敛定理[J].数学年刊(A辑),2003,24(2):231-238. 被引量:13
  • 3Chidume C E. Mutangadura S A. An example on the Mann iteration method for Lipschitz pseudocontractions[J]. Proc Amer Math Soc, 2001,129 (8): 2359-2363.
  • 4Noor M A. Three-step iterative algorithms for multivalued quasi varitional inclusions [J]. J Math Anal Appl. 2001,255:589 - 604.
  • 5Noor M A. Three-step iterations for nonlinear accretive operator equations[J]. J Math Anal Appl.2002. 274:59 - 68.
  • 6Glowinski R. P Le Tallec. Augemented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics[M]. SIAM. Philadelphia. 1989.
  • 7Haubruge S, Nguyen V H. Strodiot J J. Convergence analysis and applications of the Glowinski-Le Tallec splitting method for finding a zero of the sum of two maximal monotone operators [J]. J Optim Theory Appl. 1998.97:645-673.
  • 8Xu H K. Ori R G. An implicit iteration process for nonexpansive mapping[J]. Numer Funct Anal Optim.2001. 22:767- 773.
  • 9Osilike M O. Implicit iteration process for common fixed points of a finite family of strictly pseudocontractive maps[J]. J Math Anal Appl,2004.294:73-81.
  • 10Qibou L. Iteration sequences for asymptotically quasi nonexpansive mapping with error member of uniform convex Banach space[J]. J Math Anal App,2002.1266:486-491.

二级参考文献15

  • 1曾六川.Lipschitz局部强增殖算子的非线性方程的解的迭代构造[J].应用数学和力学,1995,16(6):543-552. 被引量:12
  • 2Sastry, K. P. R. & Babu, G. V. R., Approximation of fixed points of strictly pseudocontractive mapping on arbitrary closed, convex sets in Banach space [J], Proc. Amer.Math. Soc., 128(2000), 2907-2909.
  • 3Chidume, C. E., An interative process for nonlinear Lipschitzian strongly accretive mapping in Lp spaces [J], J. Math. Anal. Appl., 15(1990), 453-461.
  • 4Chidume, C. E. & Osilike, M. O., Ishikawa iteration process for nonlinear Lipschitz strongly accretive mapping [J], J. Math. Anal. Appl., 192(1995), 727-741.
  • 5Rhoades, B. E., Comments on two fixed point iteration methods [J], J. Math. Anal.Appl., 56(1976), 741-750.
  • 6Martin, R. H., A global existence theorem for autonomous differential equations in Banach space [J], Proc. Amer. Math. Soc., 26(1970), 307-314.
  • 7Morales, C., Pseudocontractive mapping and Leray-Schauder boundary condition [J],Comment. Math. Univ. Carolina, 20(1979), 745-746.
  • 8Reich, S., Constructive techniques for accretive and monotone operators [A], in: Applied Nonlinear Analysis [M], Academic Press, New York, 1979, 335-345.
  • 9Tan, K. K. & Xu, H. K., Iterative solutions to nonlinear equations of strongly accretive operators in Banach spaces [J], J. Math. Anal. Appl., 178(1993), 9-21.
  • 10Zeng, L. C., Error bounds for approximation solutions to nonlinear equations of strongly accretive operators in uniformly smooth Banach spaces [J], J. Math. Anal. Appl., 209(1997), 67-80.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部