期刊文献+

具有高逼近阶和正则性的双向加细函数和双向小波 被引量:30

原文传递
导出
摘要 引入了双向加细函数和双向小波的概念,并研究双向加细方程的分布解(或L^2稳定解)的存在性,其中整数m≥2.基于正向面具{p_k^+}和负向面具{p_k^-},建立了确保双向加细方程具有紧支撑分布解或L^2稳定解所需要的条件.更进一步地,给出了双向加细方程的L^2稳定解能产生一个MRA所需要的条件.充分讨论了φ(x)的支撑区间.给出正交双向加细函数和双向小波的定义,建立了双向加细函数的正交准则.给出一类正交双向加细函数和正交双向小波的构造算法.另外,也给出了具有非负面具的、高逼近阶和正则性的双向加细函数的构造算法.最后,构造了两个算例.
机构地区 汕头大学数学系
出处 《中国科学(A辑)》 CSCD 北大核心 2007年第7期779-795,共17页 Science in China(Series A)
基金 广东省自然科学基金(批准号:06105648 05008289和032038) 广东省自然科学基金博士基金(批准号:04300917)资助项目
  • 相关文献

参考文献21

  • 1Daubechies I. Ten Lectures on Wavelets, Ten Lectureson Wavelets. CBM-SNSF Series in Applied Math # 61. Philadelphia: SIAM Publ, 1992
  • 2Daubechies I. Orthonormal basis of compactly supported wavelet. Comm Pure and Appl Math, 41(7): 909-996 (1988)
  • 3Chui C K, Wang J Z. On compactly supported spline wavelets and a duality principle. Trans Amer Math Soc, 330(2): 903-915 (1992)
  • 4Daubechies I, Lagarias J C. Two-scale difference equation I: Existence and global regularity of solutions. SIAM J Math Anal, 22(5): 1388-1410 (1991)
  • 5Daubechies I, Lagarias J C. Two-scale difference equation II: Local regularity, infinite products of matrices and fractal. SIAM J Math Anal, 23(4): 1031-1079 (1992)
  • 6Chui C K. An introduction to wavelet. New York: Academic Press, 1992
  • 7Nelson J D B. A wavelet filter enhancement scheme with a fast integral B-wavelet transform and pyramidal multi-B-wavelet algorithm. Appl Comput Hamon Anal, 18(3): 234-251 (2005)
  • 8Jiang Q T. Parameterization of M-channel orthogonal multiwavelets banks. Adv Comp Math, 12(2-3): 189-211 (2000)
  • 9Shen Z W. Refinable function vectors. SIAM J Math Anal, 29(1): 235-250 (1998)
  • 10Cabrelli C, Heil C, Molter U. Accuracy of lattice translation of several multidimensional refinable function. J Approx Theory, 95(1): 5-52 (1998)

二级参考文献20

  • 1Vetterli M. Perfect reconstruction FIR filter banks: Some properties and factorization. IEEE Trans Acoust Speech Signal Process, 1989, 37:1057-1071.
  • 2Jia R Q, Zhou D X. Convergence of subdivision schemes associated with nonnegative masks. SIAM J Matrix Anal Appl, 1999, 21:418-430.
  • 3Han B, Jia R Q. Multivariate refinement equations and convergence of subdivision schemes. SIAM J Math Anal, 1998, 29:1177-1199.
  • 4Han B. Vector cascade algorithms and refinable function vectors in Sobolev spaces. J Approx Theory,2003, 124:44-88.
  • 5Han B, Mo Q. Multiwavelet frames from refinable function vectors. Adv Comp Math, 2003, 18:211-245.
  • 6Zhou D X. Interpolatory orthogonal multiwavelets and refinable functions. IEEE Trans Signal Processing,2002, 50:520-527.
  • 7Chui C K, Lian J A. A study on orthonormal multiwavelets. J Appl Numer Math, 1996, 20:273-298.
  • 8Yang S Z, Cheng Z X, Wang H Y. Construction of biorthogonal multiwavelets. J Math Anal Appl, 2002,276:1-12.
  • 9Yang S Z. A fast algorithm for constructing orthogonal multiwavelets. ANZIAM Journal, 2004, 46:185-202.
  • 10Lian J A. On the order of polynomial reproduction for multi-scaling functions. Appl Comp Harm Anal,1996, 3:358-365.

共引文献2

同被引文献186

引证文献30

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部