期刊文献+

一个具有年龄结构的单种群离散反应扩散模型的波前解

Traveling Wave Fronts in an Age-Structured Spatially Discrete Reaction-Diffusion Model of a Single Species
下载PDF
导出
摘要 利用上下解方法研究了一个具有年龄结构的单种群离散反应扩散模型波前解的存在性,并证明了存在具有临界波速的波前解. This paper deals with the existence of traveling wave fronts of an age-structured spatially discrete reaction-diffusion model of a single species. The existence of such solutions is proved using the upper-lower solution technique. critical wave speed exists. We also show that the traveling wave with the
作者 杨立娟 房辉
出处 《生物数学学报》 CSCD 北大核心 2007年第2期227-232,共6页 Journal of Biomathematics
基金 国家自然科学基金(10161007 10561004) 教育部"春晖计划"云南项目执行方案(2004) 云南省教育厅重点资助项目(03Z190A)
关键词 波前解 上下解 年龄结构 Traveling wave front Upper-lower solution Age-structure
  • 相关文献

参考文献5

  • 1Al-Omari J,Gourley S A.Monotone traveling fronts in an age-structured reaction.diffusion model of a single species[J].J Math Biol,2002,45(4):294-312.
  • 2Zou Xingfu.Traveling wave fronts in spatially discrete reaction-diffilsion equations on higher dimensional lattiees[C].Electronic Journal of Differential Equations,1997,Conference 01:211-222.
  • 3Zhao Xiaoqiang,Wang Wendi.Fisher waves in an epidemic model[J].Discrete and Continuous Dynamical Systems-Series B,2004,4(4):1117-1128.
  • 4Zinner B,Harris G,Hudson W.Traveling wavefronts for the discrete Fisher's equation[J].Journal of Differential Equations,1993,105(1):46-62
  • 5丁玮,韩茂安.具时滞的人口模型的行波解(英文)[J].生物数学学报,2005,20(1):11-16. 被引量:11

二级参考文献8

  • 1Schaaf K W. Asymptotic behavior and traveling wave solutions for parabolic functional differential equations[J]. Trans Amer Math Soc, 1987, 302(2):587-615.
  • 2Zou X,Wu J. Existence of traveling wave fronts in delayed reaction diffsion systems via the monotone iteration method[J]. Proc Amer Math Soc, 1997, 125(9):2589-2598.
  • 3Jianhua Huang, Xinfu Zou. Existence of traveling wave fronts of delayed lattice differential equations[J].Memorial Uniuer, 2004, 298(2):538-558.
  • 4Shiwang Ma. Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem[J]. J Differential Equations, 2001, 171(2):294-314.
  • 5Wu J, Zou X. Traveling Wave Fronts of Reaction Diffusion Systems with Delay[M]. New York: J Dynam Diff Equs, 2001, 13(3):651-687.
  • 6Joseph W. -H. So, and Xinfu Zou. Traveling waves for diffusive nicholson's blowflies equation[J]. Applied Math and Computation, 2001, 122(3):385-392.
  • 7Wu J, Zou X. Asymptotic and periodic boundary value problem of mixed fdes and wave solutions of lattice differential equations[J]. J Differential Equations, 1997, 135(2):315-357.
  • 8Gourley S A. Wave solutions of a diffusive delay model for populations of Daphnia magna[J]. Computer Math Appl, 2001, 42(12):1421-1430.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部