期刊文献+

残棱柱体模和数的上界

On the Upper Bound of the Sum Number of Incomplete Prism
下载PDF
导出
摘要 各种和图标号都可用作图的压缩表示.一个图G称为和图,若它同构于某个SN的和图.一个图G称为模和图,若它同构于某个S{1,2,……,m-1}且所有算术运算均取模m(≥S+1)的和图.图G的模和数ρ(G)是使得G∪ρK1是模和图的非负整数ρ的最小值.Cn×K2称为棱柱体,将棱柱体上下底面的棱Cn进行一次剖分所形成的图形称为残棱柱体.给出了残棱柱体的模和标号,从而证明了残棱柱体的模和数的上界为4. Sum graph labelling can be used as a compressed representation of a graph by computer. A graph G is said to be a sum graph if it is isomorphic to the sum graph of some S belong to N . A graph G is said to be a mod sum graph if it is isomorphic to the sum graph of some S belong to { 1,2,…… , m - 1 } if all arithmetic is performed modulo m ( ≥ | S | + 1) . The mod sum number ρ (G) of G is the smallest number of isolated vertices which when added to G result in a mod sum graph. Cn × K2 is called prism , it is called incomplete prism when we give a subdivision to Cn of prism . This paper gives a mod sum labelling of incomplete prism, and has proved the upper bound of the sum number of incomplete prism is 4 for all n ≥3.
作者 高秀莲
机构地区 德州学院数学系
出处 《菏泽学院学报》 2007年第2期8-10,50,共4页 Journal of Heze University
基金 山东省教育科学十一五规划资助项目(115JZ196)
关键词 棱柱体 模和数 模和标号 模和图 incomplete prism mod stun number mod stun labelling mod stun graph
  • 相关文献

参考文献7

  • 1[1]Bondy J A,Murty U S R.Graph Theory with Applications[M].New York:Macmillan London and Elsevier,1976.
  • 2[2]Harary F.Sum graphs and difference graphs[J].Congr.Numer,1990,72:101-108.
  • 3[3]Harary F.Sum graphs over all the integers[J].Discrete Math,1994,124:99-105.
  • 4[4]Boland J,Laskar R.On mod sum graphs[J].Congr.Numer,1990,70:131-135.
  • 5[5]Chen Zhibo.Integral sum graphs from identification[J].Discrete Math,1998,181:77-90.
  • 6彭敬.G_(n,n)的和数[J].西南师范大学学报(自然科学版),2005,30(2):218-220. 被引量:2
  • 7彭敬,樊静淳.整和图的几个性质[J].牡丹江大学学报,2005,30(4):63-64.

二级参考文献4

  • 1Harary F. Sum Graphs and Difference Graphs [J]. Conger Number, 1990, 72:101 - 108.
  • 2Harary F. Sum Graphs Over All the Integers [J]. Discrete Math, 1994, 124:99-105.
  • 3Melnikov L S, Pyatkin A V. Regular Integral Sum Graphs [J]. Discrete Math, 2002, 252: 237- 245.
  • 4Bondy J A, Murty U S R. Graph Theory with Applications [M]. New York Macmillan London and Elsevier: Man Millan,1976. 20-39.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部