期刊文献+

A Generalized Upper and Lower Solution Method for Singular Discrete Boundary Value Problems 被引量:1

奇异差分边值问题上下解方法的推广(英文)
下载PDF
导出
摘要 This paper presents new existence results for singular discrete boundary value problems. In particular our nonlinearity may be singular in its dependent variable and is allowed to change sign.
作者 胡卫敏 韦俊
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2007年第2期212-219,共8页 数学季刊(英文版)
关键词 upper and lower solutions discrete boundary value problem EXISTENCE SINGULAR 奇异差分边值问题 上下解方法 存在性 常微分方程
  • 相关文献

参考文献13

  • 1AGARWAL R P,O'REGAN D.Nonpositive discrete boundary value problems[J].Nonlinear Analysis,2000,39:207-215.
  • 2AGARWAL R P,O'REGAN D.Singular discrete boundary value problems[J].Appl Math Letters,1999,12:127-131.
  • 3AGARWAL R P,O'REGAN D.Boundary value problems for discrete equations[J].Appl Math Letters,1997,10:83-89.
  • 4AGARWAL R P,O'REGAN D.Singular discrete (n,p) boundary value problems[J].Appl Math Letters,1999,12:113-119.
  • 5AGARWAL R P,O'REGAN D,WONG P J Y.Positive Solutions of Differential Difference and Integral Equations[M].Dordrecht:Kluwer Acad Publ,1999.
  • 6AGARWAL R P,O'REGAN D.Singular initial and boundary value problems with sign changing nonlinear-ities[J].IMA J of Appl Math,2000,65:173-198.
  • 7AGARWAL R P,O'REGAN D.Some new existence results for singular problems with sign changing non-linearities[J].J Comput Appl Math,2000,113:1-15.
  • 8Agarwal R P,O'REGAN D,LAKSHMIKANTHAM V,et al.Existence of positive solutions for singular initial and boundary value problems via the classical upper and lower solution approach[J].Nonlinear Analysis,2002,50:215-222.
  • 9AGARWAL R P,O'REGAN D,LAKSHMIKANTHAM V,et al.An upper and lower solution theory for singular Emden-Fowler equations[Jj.Nonlinear Analysis Real World Applications,2002,3:275-291.
  • 10HABETS P,ZANOLIN F.Upper and lower solutions for a generalized Emden-Fowler equation[J].Jour Math Anal Appl,1994,181:684-700.

同被引文献14

  • 1AGARWAL R P, O'REGAN D. Nonlinear superlinear singular and nonsingular second order boundary value problems[J]. J Differential Equations, 1998, 143: 60-95.
  • 2AGARWAL R P, O'REGAN D. Twin solutions to singular Dirichlet problems[J]. J Math Anal Appl, 1999, 240: 433-445.
  • 3AGARWAL R P, O'REGAN D. Existence theory for single and multiple solutions to singular posit one boundary value problems[J]. J Differential Equations, 2001, 175: 393-414 .. ,.
  • 4De COSTER C. Pairs of positove solutions for the one-dimensional p-Laplacian[J]. Nonlinear Analysis, 1994, 23: 669-681.
  • 5JIANG Da-qing. Multiple positive solutions to singular boundary value problems for superlinear higher?order ODEs[J]. Computers and Mathematics with Applications, 2000, 40: 249-259.
  • 6JIANG Da-qing. Upper and lower solutions method and a superlinear singular boundary value problem for the one-dimension p-Laplacian[J]. Computers and Mathematics with Applications, 2001, 42: 927-940.
  • 7TALIAFERRO S. A nonlinear singular boundary value problem[J]. Nonlinear Analysis, 1979,3: 897-904.
  • 8KONG Ling-bin, WANG Jun-yu. Multiple positive solutions for the one-dimensional p-Laplacian[J]. Non?linear Analysis, 2000, 42: 1327-1333.
  • 9ZHANG Mei-rong. Nonuniform nonresonance at the first eigenvalue of the p-LapJacian[J]. Nonlinear Anal?ysis, 1997, 29: 41-51.
  • 10XU Xiao-jie, JIANG Da-qing, Twin positive solutions to singular boundary value problems of second-order differential systems[J]. J Pure Appl Math, 2003, 34(1): 85-99.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部