摘要
通过定义 B.C 型 Weyl 群对任意多粒子态矢量空间的作用构造了含有反射边界条件及广义统计的谐振子代数及相应的 Fock 空间,并将结果推广到了多分量情形.构造所得的谐振子代数的 Fock 空间系由普通谐振子的 Fock 空间经与 Weyl 群相联系的投影运算得到.给出了单分量情形下关联函数的递推关系.
The oscillator algebra with reflecting boundary is constructed together with its Fock space,and is generalized to the cases with generalized statistics and multicomponent.Such oscillators depend manifestly on the reflection factor and the statistical (exchange) factor.By construction,the Fock space of such oscillator alge- bras can be obtained by certain projection operation,from that of the usual bosonic oscillator without reflection condition.
出处
《高能物理与核物理》
EI
CSCD
北大核心
1997年第1期25-33,共9页
High Energy Physics and Nuclear Physics
关键词
谐振子代数
反射边界
广义统计
量子论
oscillator algebra
reflection boundary
Fock space
generalized statistics