期刊文献+

保持拓扑结构的低维嵌入

DIMENSION REDUCTION WITH ORIGINAL TOPOLOGICAL STRUCTURE
下载PDF
导出
摘要 引入了拓扑邻域、拓扑结构和规则拓扑结构的概念。对拓扑邻域进行了理论分析,说明其是自适应的,随着维数的不断升高,趋于平凡拓扑邻域。为了寻求具有规则拓扑结构的低维数据集,构造了数据结构规则性的度量,提出了保持数据集拓扑结构不变的降维方法。该方法是节省参数的,降维结果是近似规则的。结果表明,它能更好的揭示数据集的结构。 The topological neighborhood, topological structure and regular structure are introduced. It is proved that the topological neigh- borhood is self-adaptive and goes to triviality with the increase of the dimension. To get the low dimensional data with regular structure, the measure of the regularity is constructed and then the dimension reduction is brought forward. The method economizes the parameters and makes the results approximately regular. The results show that this technique can well reveal the topological structure of data.
出处 《计算机应用与软件》 CSCD 北大核心 2007年第7期47-49,共3页 Computer Applications and Software
基金 高等学校博士学科点专项科研基金(20049998008) 国家自然科学项目基金(60003013)。
关键词 拓扑邻域 拓扑结构 规则的 LAPLACIAN eigenmap Topological neighborhood Topological structure Regular Laplacian eigenmap
  • 相关文献

参考文献5

  • 1Chen Tsuhan,et al.Principle Component Analysis And Its Variants For Biometrics.In:IEEE 2002 International Conference on Image Processing,2002.
  • 2Thomas L Griffiths,et al.A Multidimensional scaling approach to mental multiplication.Memory & Cognition,2002,30(1):97-106.
  • 3Balakrishnama S,et al.Linear Discriminant Analysis-A Brief Tutorial.Institute for Signal and information Processing,March 1998.
  • 4He Xiaofei,et al.Locality Preserving Projections(LPP).Technical Report TR-2002-09.Computer Science Department of the University of Chicago.
  • 5Kevin Beyer,et al.When is 'nearest neighbor' meaningful?.In:7th International Conference on Database Theory(ICDT-1999),Jerusalem,Israel,1999.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部