摘要
针对单小波域难以准确描述SAR图像不同平滑区域特征的不足,提出一种基于多小波域Besov球映射去噪算法。首先利用统一小波隐马尔可夫树模型和Besov标准求一组小波基Besov球半径,然后交替使用基于不同小波基的Besov球映射算法估计原始图像信息。实验结果表明,该算法具有很好的去噪效果和边缘结构保护能力,大大优于其他单一小波去噪算法。
Different smoothing regions of SAR image can not be represented accurately in single wavelet domain. In order to solve this problem, a Besov ball projections algorithm in multiple wavelet domains was proposed. Different Besov balls' radius were defined by the universal hidden Markov tree model and Besov norm, then an image was projected onto alternate Besov balls of proper radius corresponding to the projection onto convex sets algorithm based on preserving edge and strong scatterers (SPOCS) for image denoising. Experimental results demonstrate that this method can not only provide significant improvement over conventional algorithms based on single wavelet domain, but also preserve edge structure better.
出处
《计算机应用》
CSCD
北大核心
2007年第7期1634-1636,1650,共4页
journal of Computer Applications
基金
国防预研项目
关键词
多小波域
Besov球
强辐射中心
去噪
凸集映射
multiple wavelet domains
Besov ball
strong scatterers
denoising
Project Onto Convex Sets (POCS)