期刊文献+

斜拉桥中索-桥耦合非线性振动的理论研究 被引量:2

THEORETICAL STUDY ON NONLINEAR COUPLED VIBRATION OFCABLES AND BRIDGE DECKS
下载PDF
导出
摘要 考虑拉索的垂度、大位移引起的几何非线性及空气动力对系统的影响,将桥面简化为等截面的连续梁,建立了索-桥耦合的非线性振动模型。得到了对不同拉索数值求解的结果,表明当桥面和拉索的振动频率比值在1:1和2:1附近的小区间范围内时,索-桥耦合系统将产生严重的内共振,并呈现拍振的特征,而拉索与桥面耦合的振动特性与索的振动频率、垂度、倾角、风速偏航角、风速大小和阻尼等因素有关,从而为桥梁的设计和计算提供了理论依据。 The nonlinear coupled vibration model of cables and bridge decks is established. The decks are simplified as continuous beams with uniform cross section. The sag of cable, aerodynamics and geometric non-linearity caused by large displacement are considered. The numerical results of different cables are obtained. Serious internal resonance with beat rhythm can occur when the ratio of cable frequency and deck frequency is close to 1:1 and 2:1. The results show that the vibration characteristic of the coupled system is related with the sag of cable, vibration frequency, wind velocity, yaw angle of wind velocity, inclined angle and damping. It can provide theoretical basis for bridge design and calculation.
出处 《工程力学》 EI CSCD 北大核心 2007年第7期122-127,共6页 Engineering Mechanics
基金 国家自然科学基金资助(10172064 10572101)
关键词 斜拉桥 拉索 非线性振动 空气动力 垂度 cable-stayed bridge cable non-linear vibration aerodynamics sag
  • 相关文献

参考文献11

  • 1Lilien J L,Pinto Da Costa A.Vibration amplitudes caused by parametric excitation of cable stayed structures[J].Journal of Sound and Vibration,1994,174(2):69-90.
  • 2Lilien J L,Pinto Da Costa A.Vibration amplitudes caused by parametric excitation of cable stayed structures[J].Journal of Sound and Vibration,1977,51(14):483-492.
  • 3SIAI-Noury,Ali S A.Large-amplitude vibration of parabolic cable[J].Journal of Sound and Vibration,1985,101(4):451-462.
  • 4Visweswara Rao G.Internal resonance and non-linear response of a cable under periodic excitation[J].Journal of Sound and Vibration,1991,149(1):25-41.
  • 5陈水生,孙炳楠,胡隽.斜拉索受轴向激励引起的面内参数振动分析[J].振动工程学报,2002,15(2):144-150. 被引量:23
  • 6Pinto Da Costa A,Martins J A C.Oscillations of bridge stay cables induced by periodic motions of deck and/or towers[J].Journal of Engineering Mechanics,1996,122(7):613-622.
  • 7亢战,钟万勰.斜拉桥参数共振问题的数值研究[J].土木工程学报,1998,31(4):14-22. 被引量:96
  • 8陈水生,孙炳楠.斜拉桥索-桥耦合非线性参数振动数值研究[J].土木工程学报,2003,36(4):70-75. 被引量:56
  • 9刘习军,王霞,贾启芬,刘国英,李强.斜拉桥拉索的风雨激励振动特性[J].天津大学学报(自然科学与工程技术版),2005,38(8):674-678. 被引量:6
  • 10宋一凡.公路桥梁动力学[M].北京:人民交通出版社,2002.

二级参考文献25

  • 1汪至刚.大跨度斜拉桥拉索的振动与控制:学位论文[M].杭州:浙江大学土木系,2000..
  • 2汪至刚.大跨度斜拉桥拉索的振动与控制[D].杭 州:浙江大学,2000.
  • 3A H 奈克 D T 穆克.非线性振动[M].北京:高等教育出版社,1996..
  • 4J. L. Lilien, A. Pinto Da Costa. Vibration amplitudes caused by parametric excitation of cable stayed structures[J]. Journal of Sound and vibration 174 (2) 69 - 90,1994.
  • 5Chris Geurts, Ton Vrouwenvelder, Piet van Staalduien, Jaco Reusink (Netherlands). Numerical modelling of rain-windinduced vibration: Erasmus Bridge, Rotterdam [J]. Structural Engineering International, 1998.
  • 6A. Pinto Da Costa, J. A. C. Martins, et al. Oscillations of bridge stay cables induced by periodic motions of deck and/ or towers [J]. Journal of Enginecring Mechanics, 122 (7), 1996.
  • 7Michel Virlogeux (France). Cable vibration in cable-stayed bridges [J]. Bridge Dynamic 213 - 233, 1998.
  • 8H. Max Irvine. Cable Structure [M]. The MIT Press, 1981.
  • 9S. I. Al-Noury, S. A. Ali. Large-amplitude vibrations of parabolic cables [J]. Journal of Sound and Vibration, 101 (4), 451-462, 1985.
  • 10G. Tagata. Harmonically Forced, Finite Amplitude Vibration of A String [J]. Journal of Sound and Vibration, 51 (4), 483-492, 1977.

共引文献140

同被引文献16

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部