摘要
研究了S1^4(4维洛伦兹球面)中的Ⅲ型洛伦兹等参超曲面。说明了S1^4中的任何Ⅲ型洛伦兹等参超曲面M局部地与最小多项式为λ^3的某个洛伦兹等参超曲面^~M的平行超曲面叠合,还证明了这种超曲面^~M局地被三个一元函数C1(u),C2(u),C3(u)所唯一确定,并给出了^~M的解析表达式。从而完成了S1^4中洛伦兹等参超曲面的完全分类。
In the present paper isoparametric hypersurfaces in the Lorentzian sphere S1^4 are studied. It is proved that any Lorentzian isoparametric hypersurface M of type Ⅲ in S1^4 is locally congruent to a parallel hypersurface of a Lorentzian isoparametric hypersurface ^~M with minimal polynomial λ^3. And ^~M is determined uniquely by three functions C1 (u) , C2 (u) and C3 (u). For Lorentzian isoparametric hypersurface ^~M with minimal polynomial λ^3 in S1^4 the analytic expression is given. This together with former papers of other authors completes the classification of Lorentzian isoparametric hypersurfaces in S1^4.
出处
《南昌大学学报(理科版)》
CAS
北大核心
2007年第3期209-213,218,共6页
Journal of Nanchang University(Natural Science)
基金
国家自然科学基金资助项目(10261006)
教育部全国优秀博士论文作者专项资金资助项目(200217)
江西省自然科学基金资助项目(0611080)
关键词
洛伦兹球面
洛伦兹超曲面
等参超曲面
lorentzian sphere
lorentzian hypersurface
isoparametric hypersurface