摘要
研究常曲率的3维球面S3=SU(2)到复射影空间CP3中的等变极小浸入,证明了这种浸入不存在介于CR和Lagrangian之间的浸入,只能是Lagrangian浸入,从而是全测地的。
The equivariant minimal immersion from the Euclidean sphere s^3 = SU(2) with constant curvature c into the complex projective space sp^3 is studied. It is proved that there is no immersion between CR and Lagrangian immersion, the immersion has to be Lagrangian and hence is totally geodesic.
出处
《南昌大学学报(理科版)》
CAS
北大核心
2007年第3期214-218,共5页
Journal of Nanchang University(Natural Science)
基金
国家自然科学基金资助项目(10261006)
教育部全国优秀博士论文作者专项资金资助项目(200217)
江西省自然科学基金资助项目(0611080)