期刊文献+

引信机构旋转偏心的蒙特卡罗模拟 被引量:4

Simulation for Spin Eccentricity of Device in Fuze with Monte Carlo Method
下载PDF
导出
摘要 旋转偏心是旋转弹引信机构工作特性分析与计算的重要参数。为了得出引信机构旋转偏心的具体数值,以某引信球转子机构为例,对其旋转偏心所涉及的方向随机的矢量尺寸链进行了详细分析,应用蒙特卡罗法对旋转偏心进行了模拟计算,计算过程中涉及了作为组成环之一的采用相关原则标注的同轴度,并将模拟结果与极值法和概率统计法所得结果进行了对比分析。模拟结果表明:引信机构旋转偏心数值为近似于瑞利分布的偏态分布,最小值大于零,而其方向角为关于0°的对称分布,但并非均匀分布,也非正态分布。 The spin eccentricity is an important parameter in analyzing and calculating the working characteristic for the device in fuze of a spin projectile. In order to get the value of spin eccentricity of the device in fuze,taking a fuze ball rotor device as an example, the vector dimension chain with random direction, which including its spin eccentricity, is analysed in detail and its spin eccentricity is calculated with Monte Carlo simulating method. In the calculation the coaxiality marked with correlation principle and regarded as one of component links of the dimension chain is referred to. The simulation results is contrasted and analyzed with the result that was got from extremum method and probability statistics method. The simulation results from Monte Carlo simulating method show that the value of spin eccentricity for the device in fuze obeys skew distribution that approximates to Rayleigh distribution and its minimum value is larger than zero, its direction angle is symmetrical about zero degree. But it obeys neither uniform distribution nor normal distribution.
出处 《探测与控制学报》 CSCD 北大核心 2007年第3期72-75,79,共5页 Journal of Detection & Control
关键词 引信 球转子 旋转偏心 蒙特卡罗方法 相关原则 数值模拟 尺寸链 fuze ball rotor spin eccentricity Monte Carlo method correlation principle numerical simulation dimensional chain
  • 相关文献

参考文献6

  • 1Andrew Rukhin,Juan Soto.A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications[M].USA:NIST Special Publication,2001.
  • 2苏桂平,刘争春,姚旭初,殷学文.一种信息安全系统中序列随机性检验方法[J].计算机工程,2006,32(8):153-154. 被引量:12
  • 3吴郑国,夏立.现代信号处理技术-高阶谱、时频分析与小波变换[M].武汉:武汉大学出版社,2003.
  • 4王军,李亚安.多分量信号时频分析交叉项抑制研究[J].探测与控制学报,2004,26(4):13-17. 被引量:9
  • 5Franz H W,Wemer K Z.The Wigner Distribution of a Linear Signal Space[J].IEEE Transactions on Signal Processing,1993,41(3):1248-1258.
  • 6Moler C B.Numerical Computing with MATLAB[M].USA:SIAM,2004.

二级参考文献10

  • 1[4]John C Wood,Daniel T Barry.Linear Signal Synthesis Using the Radon-Wigner Transformation[J].IEEE Trans on Signal Processing,1992,42(8):2105-2111.
  • 2[5]Patrick J Loughlin,James W Pitton.Bilinear Time-Frequency Representations:New Insights and Properties[J].IEEE Trans on Signal Processing,1993,41(2) :750-766.
  • 3[1]Richard G Baraniuk,Douglas Jones.Signal-dependent time-frequency analysis using a radially Gaussian kernel[J].Signal Processing,1993:263-284.
  • 4[2]Richard G Baraniuk,Douglas Jones.A signal-Dependent Time-frequency Representation:Optimal Kernel Design[J].IEEE Trans on Signal Processing,1993,41(4):1589-1602.
  • 5[3]Choi H I,Williams W J.Improved time-frequency representation of multicomponent signals using exponential kernels[J].IEEE Trans.Acoust.Speech Signal Process.,1989,37(6):862-871.
  • 6Schneier B.Secrets & Lies:Digital Security in Networked World[M].Jone Wiley & Sons,2000:85-101.
  • 7王玉柱.随机性测试研究与实现[D].北京:中国科学院研究生院,2000-06.
  • 8Maurer U M.A Universal Statistical Test for Random Bit Gen-erators[J].Journal of Cryptology,1992,5(2):89-105.
  • 9Venkatesan S,Anantharam V.The Common Randomness Capacity of a Network of Discrete Memoryless Channels[J].IEEE Trans.on Information Theory,2000,46 (2):367-387.
  • 10苏桂平,吕述望.计算机安全系统中随机序列发生器的研究[J].计算机研究与发展,2003,40(7):994-1000. 被引量:16

共引文献18

同被引文献14

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部