期刊文献+

改进的在线自然语音卷积混合信号时域盲分离方法 被引量:2

Online Time-Domain Algorithm for Blind Separation of Convolution Speech Signals
下载PDF
导出
摘要 针对语音信号所具有的非平稳性和时域相关性,提出了一种新的卷积混合语音信号盲分离的在线时域算法。该算法通过利用分块处理方法和带遗忘因子更新的非完备约束条件及其推广,对于许多已有在线算法中存在的由于目标源数目随时间不断变化而产生的不稳定性问题,以及语音信号时域相关性而导致的恢复信号失真问题进行了改进,最后通过仿真,结果表明,本文方法可以有效地处理语音卷积信号的在线盲分离问题,同时在源数目变化时算法的鲁棒性较好。 Aimed at non-stationary and ttme-correlation property of new online time-domain blind separation algorithm is proposed for convolutive mixtures of natural speech. Based on block processing technique, the nonholonomic constraint updated with forgetting factor and its generalization, the algorithm provides a solution to avoid the limitations in most traditional methods, such as the severe instability problem caused by varying number of the original sources during the iteration process and the separated signals distortion resulting from the time-correlation property of speech. Experimental results confirm the efficient and robust convergence performance of the new approach.
出处 《数据采集与处理》 CSCD 北大核心 2007年第2期138-143,共6页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(60571052)资助项目
关键词 信号盲分离 非平稳特性 时域相关性 自然梯度法 blind signal separation (BSS) non-stationary characteristics time-correlation natural gradient method
  • 相关文献

参考文献8

  • 1Hyvarinen A,Karhunen J,Oja E.Independent component analysis[M].New York:John Wiley Ltd,2001:147-289.
  • 2Araki S,Makino S,Nishikawa T,et al.Fundamental limitation of frequency domain blind source separation for convolutive of speech[C]//IEEE International Conference on Acoustics,Speech,and Signal Processing.Salt Lake City,USA:IEEE,2001:2737-2740.
  • 3Amari S,Douglas S C,Cichocki A,et al.Novel online adaptive learning algorithms for blind deconvolution using the natural gradient approach[C]//Proc of 11th IFAC Symposium on System Identification.Kitakyushu City,Japan:Elsevier,1997:1057-1062.
  • 4Douglas S C,Sawada H,Makino S.Natural gradient multichannel blind deconvolution and speech separation using causal FIR filters[J].IEEE Transactions on Speech and Audio Processing,2005,13(1):92-104.
  • 5Bucher H,Aichner R,Kellermann W.A generalization of blind source separation algorithms for convolutive mixtures based on second-order statistics[J].IEEE Transactions on Speech and Audio Processing,2005,13 (1):120-134.
  • 6Cichocki A,Amari S.Adaptive blind signal and image processing[M].New York:John Wiley & Sons Ltd,2002:335-381.
  • 7Inouye Y,Liu R W.A system-theoretic foundation for blind equalization of an FIR MIMO channel system[J].IEEE Transactions on Circuits and Systems-Ⅰ:Fundamental Theory and Applications,2002,49(4):425-436.
  • 8Choi S,Amari S,Cichocki A,et al.Natural gradient learning with nonholonomic constraint for blind deconvolution of multiple channels[C]//Proc of International Workshop on Independent Component Analysis and Blind Signal Separation (ICA' 99).Aussois,France:IEEE,1999:371-376.

同被引文献16

  • 1王振力,白志强.一种新的卷积混合信号的盲分离算法[J].数据采集与处理,2008,23(5):532-536. 被引量:2
  • 2孟静,许刚.语音增强算法评估的研究[J].计算机工程,2006,32(24):223-225. 被引量:6
  • 3Cardoso J F, Souloumiac A. Blind beanaforming for non-Gaussian signals[J]. lEE Proceedings-F, 1993, 140(6) : 362-370.
  • 4Feng D Z,Zhang X D,Bao Z. An efficient multistage decomposition approach for independent components [J]. Signal Processing, 2003,83 ( 1 ) : 181-197.
  • 5Yilmaz O,Richard S. Blind separation of speech mixture via time-frequency masking [J]. IEEE Transactions on Signal Processing, 2004,32(7) : 1830-1847.
  • 6Aissa-EI-Bey A, Linh-Trung N, Abed-Meraim K, et al. Underdetermined blind separation of nondisjoint sources in the time-frequency domain [J. IEEE Transactions on Signal Processing, 2007,55(3) : 897- 907.
  • 7Brandstein M, Ward D. Microphone arrays: signal processing technklues and applications[M].[S.l. ]. Springer,2001:25.
  • 8Vicente Z,Pierre C.Robust independent component analysis by iterative maximization of the kurtosis contrast with algebraic optimalstep size[J].IEEE Transactions on Neural Networks,2010,21(2):248-261.
  • 9Tang Y,Li J P.Normalized natural gradient in independent component analysis[J].Signal Processing,2010,90(9):2773-2777.
  • 10Ye J M,Jin H H,Lou S T,et al.An optimized EASI algorithm[J].Signal Processing,2009,89(3):333-338.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部