期刊文献+

基于自组织竞争优化结构的混沌系统建模

Chaotic System Modeling Based on Fuzzy Neural Network Model and Self-Organization Competition Network
下载PDF
导出
摘要 针对混沌系统建模引入模糊神经网络模型时隶属函数不具有自适应性,系统模糊规则数的确定有一定的人为主观性的问题,本文对模型参数进行遗传退火算法优化,然后利用自组织竞争网络优化模型结构,使模型具有最佳结构即最简单的模糊规则数;再对有最佳结构的模型进行参数优化,得到具有最佳结构和参数的建模模型。以一维的Logistic系统、二维的Henon系统和Mackey-Glass混沌时间序列为例进行仿真分析,结果表明模型能够拟合原混沌系统,精度良好而且结构最简。 A fuzzy neural network model is proposed to identify chaotic system. Weight matrices and bias vectors of the model are membership function parameters. The algorithms of GAAnnealing strategy optimize the model parameters. Then self-organization competition network is used to optimize the model structure ; the new model parameters are optimized again, and the fuzzy neural network model having the simplest structure and best parameters is obtained. Simulations for model chaotic systems of Logistic system and Henon system and Mackey-Glass system show that the models can approach original systems and have advantages of simple fuzzy rules and good precision.
作者 张静
出处 《数据采集与处理》 CSCD 北大核心 2007年第2期218-223,共6页 Journal of Data Acquisition and Processing
基金 湖北省教育厅科研基金(2001D69001)资助项目 湖北省物理实验教学示范中心建设项目
关键词 混沌系统 建模 模糊神经网络 自组织竞争网络 遗传退火算法 chaotic system modeling fuzzy neural network (FNN) self-organization compe-tition network GA-annealing strategy algorithms
  • 相关文献

参考文献8

  • 1王心元.复杂非线性系统中的混沌[M].北京:电子工业出版社,2003..
  • 2Wang H,Tanakak K,Ikeda T.Fuzzy modeling and control of chaotic system[C]//Proceeding of IEEE Int Symp Circuits and Systems.[S.l.]:IEEE,1996,3:209-212.
  • 3Chen L,Chen G R.Modeling,prediction,and control of uncertain chaotic systems based on times series[J].IEEE Trans Circuits and Systems I,2000,47(10):1527-1531.
  • 4Ramazan G.Nonlinear prediction of noise time series with feedforward and networks[J].Physics Letters A,1994,187:397-403.
  • 5Ramazan G,Liu Tung.Nonlinear modeling and prediction with feedforward and recurrent networks[J].Physics D,1997,108:119-134.
  • 6Haykin S,Principe J.Making sense of a complex world[J].IEEE Signal Processing Magazine,1998,5:66-81.
  • 7郭会军,刘君华.基于GA-Fuzzy的混沌系统辨识研究[J].系统仿真学报,2004,16(6):1323-1325. 被引量:6
  • 8丛爽.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科技大学出版社,2003..

二级参考文献10

  • 1Goldberg D. Genetic Algorithm in Search Optimization and Machine Learning [M]. Adddison-Wesley, Reading, 1989.
  • 2Magne Setnes, Hans Roubos. GA-Fuzzy Modeling and Classification: Complexity and Performance [J]. IEEE Transactions on Fuzzy Systems, 2000, 8(5): 509-522.
  • 3Kantz H. A robust method to estimate the maximal Lyapunov exponent of a time series [J]. Physics Letter A, 1994, 185(1): 77-85.
  • 4Tanaka K, Ikeda T, Wang H O. A Unified Approach to Controlling Chaos via an LMI-Based Fuzzy Control System Design [J]. IEEE Transaction on Circuits and Systems. I, 1998, 45(10): 1021-1040.
  • 5Chen G R. Control and synchronization of chaotic systems (a bibliography) [EB/OL]. ECE Department, Univ. Houston, TX, available from ftp: ftp.erg.uh.edu/pub/TeX/chaos.tex (login name ''anonymous'' and password: your email address.).
  • 6Wang H, Tanaka K, Ikeda T. Fuzzy modeling and control of chaotic systems [A]. Proceedings of IEEE Int. Symp. Circuits and Systems [C]. 1996, 3: 209-212.
  • 7Takagi T, Sugeno M. Fuzzy identification of systems and its application to modeling and control [J]. IEEE Trans. Syst, Man, Cybernetics, 1985, 15: 116-132.
  • 8Chen L, Chen G R. Fuzzy Modeling, Prediction, and Control of Uncertain Chaotic Systems Based on Times Series [J]. IEEE Trans. Circuits and Systems. I, 2000, 47(10): 1527-1531.
  • 9Ramazan Gencay. Nonlinear prediction of noise time series with feedforward networks [J]. Physics Letters A, 1994, 187: 397-403.
  • 10Ramazan Gencay, Liu Tung. Nonlinear modeling and prediction with feedforward and recurrent networks [J]. Physica D, 1997, 108: 119-134.

共引文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部