期刊文献+

一类积分微分包含的可控体

Controllability of integrodifferential inclusions
下载PDF
导出
摘要 研究了一类带有非局部条件积分微分包含的可控性,在多值函数F(t,x)取凸和非凸两种情形下讨论了上述问题,建立了可控性的充分条件.对于凸情形,将所讨论的问题转化为集值积分算子的不动点问题,利用Kakutani不动点定理得到可控性.对于非凸情形,将所讨论的问题转化为单值积分算子的不动点问题,利用Schauder不动点定理得到可控性. Controllability problems of integrodifferential inclusion with nonlocal conditions have been researched. We consider this problem and establish sufficient conditions for both convex and nonconvex multi- function F(t,x). For convex case, the problem is converted into fixed pointed problem of set-valued integral operators, then the controllability theorem is obtained by using Kakutani fixed point theorem. For nonconvex case, the problem is converted into fixed pointed problem of single-valued integral operators, then the desired result is obtained by using Schauder fixed point theorem.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2007年第6期952-955,共4页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(10471032) 黑龙江省教育厅科学技术研究项目(11511136)
关键词 MILD解 可控性 Kakutani不动点 SCHAUDER不动点 上(下)半连续 mild solutions controllability Kakutani ' s fixed pointed Schauder' s fixed pointed upper (Lower) -semicontinuity
  • 相关文献

参考文献8

  • 1NATIO K.On the controllability for a nonlinear Voherra equation[J].NonlinearAnal,1992,18:99-108.
  • 2BERCHOHRA M,NTOUYAS S K.Controbility of second-order differential inclusion in Banach spaces with nonlocal conditions[J].J Opt Theory Appl,2000,107:559-571.
  • 3HAN H K,PARK J Y.Boundary controllability of differential equations with nonlocal condition[J].J Math Anal Appl,1999,230:241-250.
  • 4LI Cuocheng,XUE Xiaoping.Controllability of evolution inclusions with nonlocal conditions[J].Applied Mathematics and Computation,2003,141:375-384.
  • 5HU S,PAPAGEORGIOUS N S.Handbook of Muhivalued Analysis.Volum Ⅰ:Theory[M].The Netherlands:Kluwer Dordrecht,1997.
  • 6KLEIN E,THOMPSON A.Theory of Correspendences[M].New York:Wiley,1984.
  • 7PAPAGEORGIOUS N S.Convergence theorems for Banach space valued integrable muhifunction[J].Int J Math Sci,1987,10:433-442.
  • 8BRESSAN A,COLOMBO G.Extersions and selections of maps with decomposable values[J].Studia Math,1988,90:69-85.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部