期刊文献+

具有迷向S-曲率的指数度量 被引量:2

On the Exponential Metrics with Isotropic S-curvature
下载PDF
导出
摘要 研究了Finsler几何中一类特殊(α,β)-度量-指数度量F=αeks的S-曲率性质。笔者通过把指数度量的S-曲率与其特殊S-曲率的表达式进行比较,采用代数方程公式运算的方法,分析方程因式指数的变化,得到了指数度量具有迷向S-曲率的充要条件:指数度量具有迷向S-曲率当且仅当它具有迷向平均Berwald曲率。此时,该度量的S-曲率为零,且是弱Berwald度量。结论表明:对于这类特殊的(α,β)-度量来说,它的曲率性质较简单,即它有迷向S-曲率等价于它有迷向平均Berwald曲率,等价于它具有为零的S-曲率。 The writer studied the S-curvature of a special metric(α,β)-exponential metrics in the Finsler geometry with the form F =ae~ ,where s =β/α,α = √aij(x)y^i y^j is a Riemannian metric, β =bi(x)y^i is a non-zero 1-form , k is a constant that. The sufficiency and necessary conditions are given by comparing expressions of the S - curvature and of exponential metrics and it's special S-curvature, adopting the formula operations and analyzing the changes of the exponent of equation factors, i.e. the exponential metrics are of ispotropic S- curbature , if and only if they are of isoptropic mean Berwald metrics . In this case, it' s S-curvature vanishes, i.e. S ffi O, and it is of weakly-Berwald metric. The curvature characteristic of this class of (α,β)-metrics is not complex, i.e. they are of isotropic S -curvature which means they are of isotropic mean Berwald curvature or their S-curvatures are zero.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第7期134-137,共4页 Journal of Chongqing University
基金 国家自然科学基金资助项目(10671214) 重庆市科委自然科学基金资助项目(CSTC 2006BB8394)
关键词 指数度量 S-曲率 迷向S-曲率 迷向平均Berwald曲率 Β)-度量 exponential metrics S- curvature ispotmpic S- curvature ispotropic mean Berwald curvature metrics
  • 相关文献

参考文献10

  • 1CHERN S S,SHEN Z M,Riemann-Finsler geometry[M].Singapore,World Scientific Publishing Co.,2005.
  • 2ROMAN M,SHIMADA H,SABAU V S.On-change of the Antonelli-Shimada ecological metric[J].Tensor,N.S.2004,65:65-73.
  • 3SHEN Z M,Volume comparison and its applications in Riemann-Finsler Geometry[M].Advan-ces in.Math.1997,128:306-328.
  • 4CHENG X Y,MO X H,SHEN Z M.On the flag curvature of Finsler Metrics of scalar curvature[J].Journal of the London Mathematical Society,2003,68 (2):762-780.
  • 5CHENG X Y,SHEN Z M.Projectively flat Finsler Metrics with almost istotropic S-curvature[M].Acta Mathematica Scientia,2006,26B (2):307-313.
  • 6CHENG X Y,SHEN Z M.Randers Metrics with special curvature properties[J].Osaka Journal of Mathematical,2003,40:87-101.
  • 7SHEN Z M,YILDIRIM G C.On a class of projectively flat metrics with constant flag curcature[J].Canadian Journal of Mathematical,2006.
  • 8MO X H.On the flag curvature of a Finsler spaces with constant S-curcature[J].Houston of Math.2005,3 (1):131-144.
  • 9SHEN Z M.Finsler metrics with K = 0 and S = 0[J].Canadian Journal of mathematical,2003,55(1):112-132.
  • 10崔宁伟.关于(α,β)-度量的S-曲率[J].数学物理学报(A辑),2006,26(B12):1047-1056. 被引量:5

二级参考文献14

  • 1Shen Z. Volume comparsion and its applications in Riemann-Finsler geometry. Advances in Math, 1997, 128: 306-308
  • 2Cheng X, Mo X, Shen Z. On the flag curvature of Finsler metrics of scalar curvature. J of London Math Soc, 2003, 68(2): 762-780
  • 3Randers G. On an asymmetric metric in the four-space of general relativity. Phys Rev, 1941, 59: 195-199
  • 4Shen Z. Finsler metrics with K=0 and S=0. Canadian J Math, 2003, 55: 112-132
  • 5Chen X, Shen Z. Randers metrics with special curvature properties. Osaka J of Math, 2003, 40: 87-101
  • 6Mo X. On the flag curvature of a Finsler spaces with constant S-curvature. Houston of Math, 2005. 131-144
  • 7Matsumoto M. A slop of a mountain is a Finsler surface with respect to a time measure. J Math Kyoto Univ, 1989, 29: 17-25
  • 8Chen X, Shen Z. Projectively flat Finsler metrics with almost isotropic $S$-curvature. Acta Mathematica Scientia, 2006, 26B(2): 307-313
  • 9Bao D, Shen Z. Finsler metrics of constant curvature on the Lie group S3. J London Math Soc, 2002, 66: 453-467
  • 10Shen Z. Differential Geometry of Spray and Finsler Spaces. Dordrecht: Kluwer Academic Publishers. 2001

共引文献4

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部