期刊文献+

2-(v,11,1)设计的非可解区传递自同构群

No-solvable Block-transitive Automorphism Group of 2-(v,11,1) Designs
下载PDF
导出
摘要 本文主要讨论了区传递的2-(v,k,1)设计的分类,证明了如下的定理:设G是2-(v,11,1)设计Φ的区传递、点本原但非旗传递自同构群.若G非可解,则G的基拄Soc(G)■2G2(q). This article is devoted to classifying 2 - (v, k, 1) designs whose automorphism group G acts block transitive on block , the follow theorem is proofed : Let G is the automorphiam of a 2-(v, 11, 1)design Ф which is block-transitive,point-primitive but not flag-transitive, If G is no-solvable, then the socle of G Soc(G)≠^2G2(q).
出处 《湖南科技学院学报》 2007年第9期5-6,共2页 Journal of Hunan University of Science and Engineering
关键词 自同构群 设计 非可解 区传递 点本原 automorphism designs line-transitive point-primitive
  • 相关文献

参考文献3

  • 1P.B.Kleidman.The maximal subgroups of the Chevally groups G2(q) with odd,the Ree groups 2G2(q),and their automorphism groups[J].J.Algebra,1998,117,30-71.
  • 2Liebeck.M.and Saxl.J.On the orders of maximal subgroups of the finite exceptional groups of Lie type[J].Proc.London Math.Soc.,1998,55(13),299-330.
  • 3Roger.W.Carter.Simple groups of Lie type[M].Wiley,New York,1972.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部