期刊文献+

Ti-6Al-4V合金的超高周疲劳行为 被引量:15

ULTRA-HIGH CYCLE FATIGUE BEHAVIOR OF Ti-6Al-4V ALLOY
下载PDF
导出
摘要 采用超声疲劳实验分别确定了双态和网篮两种组织的Ti-6Al-4V合金的疲劳寿命(S-N)曲线.并用SEM观察疲劳断口.结果表明,两种组织合金的S-N曲线均保持下降趋势,在10^5-10^9 cyc间不出现水平段,不存在传统意义的疲劳极限,断口形貌分析表明,随着应力幅的降低,二者的裂纹萌生位置都发生了由试样表面到内部的转变.与加载频率为25Hz时的疲劳实验结果进行比较后发现,超声疲劳加载条件下,疲劳强度提高,疲劳寿命延长,且频率对网篮组织合金疲劳性能的影响大于对双态组织的影响. The fatigue S-N curves of Ti-6Al-4V alloys with the bimodal and basketweave microstructures were determined between 10^5-10^9 cyc using the ultrasonic fatigue testing system under a loading frequency of 20 kHz. The fracture surfaces of specimens were investigated with SEM. The results show that the S-N curves of Ti-6Al-4V with two kinds of microstructures continue to decrease with increasing the number of cycles and have no horizontal asymptote in the regime of 10^5-10^9 cyc, so no conventional fatigue limits exist for Ti-6Al-4V with the two microstructures. SEM analysis shows that the crack initiation sites change from the surface to interior of specimens with decreasing the load amplitude, and therefore formed a bimodal failure distribution. The fatigue lifetime is higher under the frequency of 20 kHz as compared with that under the frequency of 25 Hz. Especially, the fatigue behavior of the basketweave microstructure shows more pronounced frequency effect than that of bimodal microstructure.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2007年第7期705-709,共5页 Acta Metallurgica Sinica
基金 国家自然科学基金50431020~~
关键词 超高周疲劳 疲劳强度 疲劳极限 双态组织 网篮组织 ultra-high cycle fatigue, fatigue strength, fatigue limit, bimodal microstructure, basketweave microstruture
  • 相关文献

参考文献19

  • 1李兴无,夏绍玉,沙爱学.Ti-6Al-4V合金的疲劳性能[J].金属学报,2002,38(z1):277-279. 被引量:6
  • 2Tobler R L.ASTM STP 601,1976:346
  • 3Williams J C,Starke E A.Acta Mater,2003;51:5775
  • 4Bathias C.Fatigue Fract Eng Mater Struct,1999;22:559
  • 5Bathias C,Drouillac L,le Francois P.Int J Fatigue,2001;23:143
  • 6Yang Z G,Li S X,Zhang J M,Zhang J F,Li G Y,Li Z B,Hui W J,Weng Y Q.Acta Mater,2004;52:5235
  • 7曾卫东,周义刚.冷速对TC11合金β加工显微组织和力学性能的影响[J].金属学报,2002,38(12):1273-1276. 被引量:54
  • 8Eylon D,Pierce C M.Metall Tran,1976;7A:111
  • 9Papakyriacou M,Mayer H,Pyper C,Plenk H,Stanzl Tschegg S E.Mater Sci Eng,2001;A308:143
  • 10Ritchie R O,Boyce B L,Campbell J P,Roder O,Thompson A W,Milligan W W.Int J Fatigue,1999;21:653

二级参考文献11

  • 1[1]Hines J A, Lutjering G. Fatigue Fract Eng Mater Struct,1999; 22:657
  • 2[2]Eylon D, Pierce C M. Metall Trans, 1976; 7A: 111
  • 3[3]Jaffee R I, Lutjering G. In: Lutjering G, Zwicker U,Bank Weds., Titanium Science and Technology, Germany, 1984:193
  • 4[4]Stubbington C A, Bowen A W. In: Jaffee R I, Burte H M eds., Titanium Science and Technology, New York:Plenum Press, 1973:1283
  • 5[5]Bowen A W. In: Jaffee R I, Burte H M eds., Titanium Science and Technology, New York: Plenum Press, 1973:1271
  • 6[6]Kubiak K, Sieniawski J. J Mater Proc Technol, 1998;78:117
  • 7[7]Chan K J, Lankford J. Acta Metall, 1988; 36:193
  • 8[8]Sieniawski J, Filip R, Ziaja W. Mater Design, 1997; 18:361
  • 9[9]Stubbington C A, Bowen A W. J Mater Sci, 1974; 9:941
  • 10[10]Bowen A W, Stubbington C A. In: Titanium and Titanium Alloys, New York: Plenum Press, 1982:1989

共引文献58

同被引文献115

引证文献15

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部