期刊文献+

基于流预测的无线传感器网络动态功率管理 被引量:7

Dynamic power management of wireless sensor networks using stream forecast
下载PDF
导出
摘要 为了最大限度地节约能量的使用,延长无线传感器网络使用寿命,提出了一种利用小波和自回归的动态功率管理(DPM)方法.该方法利用收发器(sink)节点上的历史数据流预测未来值,在后续周期内,若传感器节点的观测值不超过给定阈值则不向sink节点发送数据,sink节点将预测值作为观测结果,通过减少传感器节点工作时间,降低网络数据传输量来减少传感器网络的总体能量消耗.理论分析和试验结果表明,该方法是有效的. An effective method of dynamic power management based on wavelet and AR (auto regression) is proposed to extend life of wireless sensor networks by making economical use of energy. The data stream gathered by sink is used to forecast in this method, and in some future periods nodes do not send back data if their observed values are not out of the threshold, the forecasted values are accepted as the result, so as to reduce the energy consumption of the sensor networks in aspects of less working time and less transported messages. Theory analyses and experiment result show that it is effective.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第7期27-30,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60203017)
关键词 传感器网络 流预测 动态功率管理 小波 自回归 sensor networks stream forecast dynamic power management wavelet auto regression
  • 相关文献

参考文献8

二级参考文献18

  • 1[1]Burt P J, Adelson E H. The Laplacian pyramid as a compact image code. IEEE Transactions on Communications, 1983, 31(4): 532~540
  • 2[2]Chipman L, Orr T, Graham L. Wavelets and image fusion. Proc. SPIE, 1995, 2569:208~219
  • 3[3]Freeman W T, Adelson E H. The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(9): 891~906
  • 4Sinha A,Chandrakasan A.Dynamic power management in wireless sensor networks[J].IEEE Design & Test of Computers,2001,18(4):62-74.
  • 5Zhang Bai-ling,Coggins R,Jabri M A,et al.Multiresolution forecasting for futures trading using wavelet decompositions[J].IEEE Transactions on Neural Networks,2001,12(4):765-775.
  • 6Chiasserini C F,Rao R R.Improving energy saving in wireless systems by using dynamic power management[J].IEEE Transactions on Wireless Communications,2003,2(5):1090-1110.
  • 7IOSIF L, SHARAD M. Capturing Sensor-Generated Time Series with Quality Guarantees[A].19th International Conference on Data Engineering Sponsored by the IEEE Computer Society[C]. New York:IEEE Computer Society, 2003. 429-440.
  • 8PHILLIP B, YOSSI M. New sampling-based summary statistics for improving approximate query answers[A]. In Proc. of the ACM SIGMOD 1998 Intl. Conf. on Management of Data[C]. New York: ACM Press,1998. 331-342.
  • 9RAKESH A, CHRISTOS F, ARUN N. Efficient Similarity Search In Sequence Databases[A]. In Proceedings of the 4th International Conference of Foundations of Data Organization and Algorithms (FODO)[C]. London:Springer-Verlag,1993. 69-84.
  • 10KEOGH E, CHU S, HART D, PAZZANI M. An online algorithm for segmenting time series[A]. In International Conference on Data Mining 2001[C]. Los Alamitos:IEEE Computer Society,2001. 289-296.

共引文献16

同被引文献56

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部