期刊文献+

汽轮机故障诊断中的信息熵融合 被引量:9

Information entropy fusion in fault diagnosis of steam turbine shaft systems
下载PDF
导出
摘要 在汽轮机轴系振动故障模拟试验的基础上,对大量故障模拟试验数据进行计算,建立了典型故障的4种信息熵样本.采用概率神经网络对故障信号的4种信息熵特征进行融合研究,并将融合结果与最小距离分类器的分类效果进行了对照分析.研究表明,概率神经网络可实现对训练样本100%的正确识别率,对“陌生”样本的正确识别率也超过80%,其识别效果远远超过最小距离分类器.可见,概率神经网络综合了贝叶斯分类器和神经网络的优势,在汽轮机故障模式分类方面具有明显的优势,利用概率神经网络融合信号的信息熵特征实现汽轮机轴系故障模式识别是一种可行有效的方法. Four information entropy samples, singular spectrum entropy, power spectrum one, wavelet energy spectrum one and wavelet space state spectrum one were calculated as information entropy data, after the faulty signals were collected from the rotor test rig. Probability neural networks (PNN) was explored to fuse the four information entropy samples. Research shows that with the advantages of Bayes classifier and neural networks, PNN have good classification ability of typical vibration faults of turbine, the classification accuracy is 100 % for training data, 80 % for fresh data. Compared with the classification accuracy of the improved minimum distance classifier, PNN have more high solutions, which is a practical fusion diagnosis method for typical fault identification of turbine rotors.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第7期89-92,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(50505013)
关键词 汽轮机 故障诊断 信息融合 信息熵 概率神经网络 steam turbine generator fault diagnosis information fusion information entropy probability neural networks
  • 相关文献

参考文献6

二级参考文献36

  • 1徐光华,蒋林,屈梁生.基于概率神经网络的大机组快速响应智能诊断系统[J].中国机械工程,1995,6(3):36-38. 被引量:4
  • 2DeRisi J, Iyer V R, Brown P O. Exploring the metabolic and genetic control of gene expression on a genomic scale[J].Science, 1997,278 : 680-686.
  • 3Khan J, Simon R, Bittner M, et al. Gene expression profiling of Alveolar rhabdomyosarcoma with cDNA microarrays[J]. Cancer Research, 1998,58(22) :5009-5013.
  • 4Lockhart D J, Dong H, Byme M C, et d. Expression monitoring by hybridization to high-density oligonueleotide arrays [J]. Nature Biotechnology, 1996,14 (12) :1675-1680.
  • 5Golub T R, Slonim D K, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring[J]. Science, 1999,286: 531-537.
  • 6Khan J, Wei J S, Ringner M, et d. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks [J]. Nature Medicine, 2 001,7(6) : 673-679.
  • 7BEN-DOR A, FRIEDMAN N, YAKHINIZ. Scoring genes for relevance[R]. Technical Report AGL-2000-13 Agilent Laboratories, 2000.
  • 8GOLUB T R, SLONIM D K, TAMAYO P, et d. Molecular classification of cancer:, class discovery and class prediction by gene expression monitoring [J]. Science,1999, 286(5439): 531-537.
  • 9RAMASWAMY S, TAMAYO P, RIFKIN R, et al.Multiclass cancer diagnosis using tumor gene expression signatures[J]. Proceedings of the National Academy of Sciences, 2001, 98(26): 15149-15154.
  • 10OOI C H, TAN P. Genetic algorithms applied to multiclass prediction for the analysis of gene expression data[J]. Bioinformatics, 2003, 19 (1): 37-44.

共引文献112

同被引文献69

引证文献9

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部