期刊文献+

基于小波变换的混合神经网络短期负荷预测 被引量:1

Short-term load forecasting by using hybrid neural network and wavelet transform
下载PDF
导出
摘要 准确的短期负荷预测是作出正确营销决策的依据。采用小波变换对负荷序列进行分解,对于每一分解序列,分别按照各自的特点选择出比较合适的影响因素,采用信息熵理论和主成份分析相结合的属性约简法对其进行约简,并利用动态聚类对各分解序列的样本归类,通过灰色关联分析找到与预测时刻负荷模式最接近的一些典型样本,训练各分解序列相应的神经网络预测模型,最后通过序列重构,得到完整的负荷预测结果。采用实际负荷数据进行测试,表明这一方法预测效果较好。 The accurate short-term load forecast is an accordance to make right marketing decision. The detailed process is as follows. Firstly, wavelet transform is employed to decompose the load sequence. To every decomposed sequence, according to each character the adequate effect factors are chosen. Secondly, information entropy and principal component analysis are combined for data reduction. By means of dynamic clustering each decomposed sequence is sample classified. Thirdly through gray relationship analysis it finds out some typical samples that are most close to forecasting-hour load model Then we can train the neural network forecast model correspond to every decomposed sequence. At last through reconstructing sequence, the complete load forecast result is gotten. The actual load data testing shows that the forecast result through using this method is good.
出处 《电力需求侧管理》 北大核心 2007年第4期22-26,共5页 Power Demand Side Management
关键词 负荷预测 神经网络 信息熵 小波变换 动态聚类 灰色关联分析 load forecasting neural network information entropy wavelet transform dynamic clustering grey relationship analysis
  • 相关文献

参考文献10

二级参考文献54

共引文献189

同被引文献14

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部