期刊文献+

智能优化的微粒群算法研究 被引量:1

Research on particle swarm algorithm of intelligent optimization
下载PDF
导出
摘要 微粒群算法是移动计算主体与群体的选择中,符合智能计算,以群体为操作单元的一种演化方法。它起源于对简单社会系统的模拟,由单一个体组成的群体与环境以及个体之间的互动行为,从而产生可预测的群体行为,这种方法优化了个体的行为策略。研究了微粒群优化算法,指出了该算法的研究进展,以此启发更深入的理论和应用研究。 The particle swarm optimization is an evolvement that accords with the intelligent computing and is based on colony as the operating unit in the mobile computing main body and colony selecting. It came of the imitation of simple society system. It can forecast the colony behavior from the environment, the mutual behavior among individuals and the colony that consists of individuals. This method optimizes the individual' s behavior strategy. The paper discusses and studies the particle swarm, points out its development. It can elicit further theoretical and practical studies in more territories.
出处 《信息技术》 2007年第7期25-28,共4页 Information Technology
基金 辽宁省自然科学基金(20052027)
关键词 智能计算 进化计算 微粒群 intelligent computing evolutionary computation PS
  • 相关文献

参考文献16

  • 1Kennedy J, Eberhart R C. Partide Swarm Optimization[C]. Proceedings of IEEE Interational Conference on Neural Networks,1995:1942- 1948.
  • 2Eberhart R C, Kennedy J. A new optimizer using particle swarm theory [C]. Proceedings of the Sixth International Symposium on Micromachine and Human Science, 1995:39- 43.
  • 3彭喜元,彭宇,戴毓丰.群智能理论及应用[J].电子学报,2003,31(z1):1982-1988. 被引量:79
  • 4谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134. 被引量:422
  • 5Swagatam Das, Amit Konar, Uday K. Chakraborty. Improving Particle Swarm Optimization with Differentially Perturbed Vdocity[ C ]. GECCO'05,2005, Washington, DC, USA.
  • 6Zhihua Cui, Jianchao Zeng. A Modified Particle Swarm Optimization Predicted by Velocity [ C ]. GECCO' 05, 2005, Washington, DC, USA.
  • 7Shi Y H,Eberhart R. A modified partide swarm optimizer[C].Proceedings of IEEE In Conference on Evolutionary Computation, 1998:69- 73.
  • 8Lu H. Dynamic population strategy assisted particle swarm optimization in multiobjective evolutionary algorithm design[M]. IEEE NNS Student Research Grants 2002 - Final Reports. 2003.
  • 9Parsopoulos K E, Vrahatis M N. Particle swarm optimization method in multiobjective problems [ C ]. Proceedings of the ACM Symposium on Applied Computing 2002,2002:603 - 607.
  • 10Ray T, Liew K M. A swarm with an effective information sharing mechanism for unconstrained and constrained single objective optimization problem [ C ]. Proceedings of IEEE Congress on Evolutionary computation,2001:75 - 80.

二级参考文献87

  • 1[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930.
  • 2[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469.
  • 3[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100.
  • 4[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976.
  • 5[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948.
  • 6[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43.
  • 7[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994.
  • 8[4]Wilson E O. Sociobiology: The New Synthesis[M]. MA: Belknap Press,1975.
  • 9[5]Shi Yuhui, Eberhart R. A modified particle swarm optimizer[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Anchorage,1998.69-73.
  • 10[6]Kennedy J. The particle swarm: Social adaptation of knowledge[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Indiamapolis,1997.303-308.

共引文献499

同被引文献6

  • 1康琦,张燕,汪镭,吴启迪.智能微粒群算法[J].冶金自动化,2005,29(4):5-9. 被引量:14
  • 2梅慧,叶春明.微粒群算法的置换Flow-Shop调度问题[J].工业工程与管理,2006,11(4):94-96. 被引量:5
  • 3Hongwei Ge,Wenli Du, Feng Qian.A Hybrid Algorithm Based on Particle Swarm Optimization and Simulated Annealing for Job Shop Scheduling [C]. Third International Conference on Natural Computation,ICNC 2007.
  • 4Brian Ivers,Gary G. Yen. Job Shop Optimization Through Multiple Independent Particle Swarms[C].Congress on Evolutionary Computation,CEC2007.
  • 5Zhixiong Liu. Investigation of Particle Swarm Optimization for Job Shop Scheduling Problem[C].Third International Conference on Natural Computation,ICNC 2007.
  • 6Kun Fan, Renqian Zhang, Guoping Xia, An Improved Particle Swarm Optimization Algorithm and Its Application to a Class of JSP Problem[C]. Proceedings of 2007 IEEE International Conference on Grey Systems and Intelligent Services,November 18-20,2007.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部