期刊文献+

映射的拓朴熵密度及其性质

On Topological Entropy Density of Maps and its Property
下载PDF
导出
摘要 在度量空间上,对于拓朴熵为无穷大的映射补充定义拓朴熵密度.相应地,得到拓朴熵密度密度的几个计算方法.同时,对于逆图象拓朴熵无穷大的映射,补充定义逆图象拓朴熵密度,一些已知的拓朴熵为无穷大拓朴熵无穷大的映射,可以给出有限的拓朴熵密度. For a map of compact metric space, topological entropy density is defined for infinite topological entropy. Accordingly, the formulation of topological entropy dersity is gained. The inverse image entropy density is defined for infinite inverse image topologicalentropy, the formulation of topological entropy density is also gained for inverse image topological entropy density. Some known results are corollary of our works. This method opens a door to study two maps with infinite topological entropy but with finite topological entropy densities.
出处 《湘潭大学自然科学学报》 CAS CSCD 北大核心 2007年第2期1-5,共5页 Natural Science Journal of Xiangtan University
基金 湖南省教育厅资助项目(04C646)
关键词 拓朴熵密度 逆图象拓朴熵密度 点熵密度 Topological entropy density inverse image entropy density point entropy density 2000 Mathematics Subject Classification 65M10 65M05
  • 相关文献

参考文献10

  • 1Barge X M,R Swanson.Pseudo-orbits and topological entropy[J].Proc Amer Math Soc,1990,109:559-566.
  • 2Perker M,Grillenberger C,Sigmund K.Ergodic Theory on Compact Spaces[J].Lecture Notes in Mathematics,527.New York:Springer-Verlag,1976.
  • 3Misiurewicz M.Remark on the definition of topological entropy[C]//Llara-Carrero,J Lewowicz,Dynamical Systems and Partial Differential Equations.Equinocio:Caracas,1986:65-67.
  • 4Walter P.An introduction to Ergodic Theory[M].New York:Springer-Verlag,1982.
  • 5Langevin R,Przytycki F.Entropie de inverse application[J].Bull Math France,1992,120:237-250.
  • 6Langevin R,Walczak P.Entropie dynamique[J].C R Acad Sci Paris,1991,312:141-144.
  • 7Hurley M.On Topological Entropy of Maps[J].Ergod Th·Dynam Sys,1995,15:557 -568.
  • 8Zeng F P.A note on Topological Entropy of Maps[J].Northeast Math J,1997,13(4):477-481.
  • 9Block L S.Coppel W A.Dynamics in one dimension[J].Lecture Notes in Mathematics[M].Berlin:Springer-Verlag,1992:1513.
  • 10Ivanov N V.Entropy and the Nielsen number[J].Soviet Math Dokl,1982,26:63-66.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部