摘要
该文提出了梯度矩阵(△↓F(X))的概念,构造了一种迭代法求最小二乘问题min‖(A1XB1,A2XB2)-(C1,C2)‖的对称解.通过这种方法,给定初始对称矩阵X1,在没有舍入误差的情况下,经过有限步迭代,找到它的一个对称解.并且,通过选择一种特殊的初始对称矩阵,得到它的最小范数对称解X*.另外,给定对称矩阵X0,通过求解最小二乘问题min‖(A1X^-B1,A2X^-B2)-(C^-1,C^-2)‖(其中C^-1=C1-A1X0B1,C^-2=C2-A2X0B2),得到它的最佳逼近对称解.
In this paper, the concept of gradient matrix ( △↓ F(X) ) is presented, and an algorithm is constructed to solve the symmetric solution of the minimum Frobenius norm residual problem: min || ( A1XB1, A2XB2 ) - ( C1, C2 )||. By this algorithm ,for any initial symmetric matrix X1 , a solution X* can be obtained within finite iteration steps in the absence of roundoff errors, and the solution X* with least norm can be obtained by choosing a special kind of initial symmetric matrix. In addition, the unique optimal approximation solution X^^ for a given matrix X0 in the Frobenius norm can be obtained by finding the least noml symmetric solution X^-* of the new minimum residual problem: rain ||(A1X^-B1, A2X^-B2) - (C^-1,C^-2)||, where C^-1 = C1 - A1X0B1,C^-2 = C2 - A2X0B2 .
出处
《湘潭大学自然科学学报》
CAS
CSCD
北大核心
2007年第2期13-19,共7页
Natural Science Journal of Xiangtan University
基金
国家自然科学基金资助项目(10571047)
湖南省教育厅资助项目
关键词
迭代法
梯度矩阵
对称解
最小范数解
algorithm
gradient matrix
symmetric solution
least- norm solution