期刊文献+

求矩阵方程组A_1XB_1=C_1,A_2XB_2=C_2最小二乘对称解及其最佳逼近的迭代法 被引量:3

An Iterative Method for the Least Squares Symmetric Solution of the Matrix Equations A_1XB_1=C_1,A_2XB_2=C_2 and Its Optimal Approximation
下载PDF
导出
摘要 该文提出了梯度矩阵(△↓F(X))的概念,构造了一种迭代法求最小二乘问题min‖(A1XB1,A2XB2)-(C1,C2)‖的对称解.通过这种方法,给定初始对称矩阵X1,在没有舍入误差的情况下,经过有限步迭代,找到它的一个对称解.并且,通过选择一种特殊的初始对称矩阵,得到它的最小范数对称解X*.另外,给定对称矩阵X0,通过求解最小二乘问题min‖(A1X^-B1,A2X^-B2)-(C^-1,C^-2)‖(其中C^-1=C1-A1X0B1,C^-2=C2-A2X0B2),得到它的最佳逼近对称解. In this paper, the concept of gradient matrix ( △↓ F(X) ) is presented, and an algorithm is constructed to solve the symmetric solution of the minimum Frobenius norm residual problem: min || ( A1XB1, A2XB2 ) - ( C1, C2 )||. By this algorithm ,for any initial symmetric matrix X1 , a solution X* can be obtained within finite iteration steps in the absence of roundoff errors, and the solution X* with least norm can be obtained by choosing a special kind of initial symmetric matrix. In addition, the unique optimal approximation solution X^^ for a given matrix X0 in the Frobenius norm can be obtained by finding the least noml symmetric solution X^-* of the new minimum residual problem: rain ||(A1X^-B1, A2X^-B2) - (C^-1,C^-2)||, where C^-1 = C1 - A1X0B1,C^-2 = C2 - A2X0B2 .
出处 《湘潭大学自然科学学报》 CAS CSCD 北大核心 2007年第2期13-19,共7页 Natural Science Journal of Xiangtan University
基金 国家自然科学基金资助项目(10571047) 湖南省教育厅资助项目
关键词 迭代法 梯度矩阵 对称解 最小范数解 algorithm gradient matrix symmetric solution least- norm solution
  • 相关文献

参考文献11

  • 1Navarra A,Odell P L,Young D M.A represontation of the general common solution to the matrix equations A1 XB1 = C1,A2XB2 = C2 with applications[J].Commputers and Mathematics Appl,2001,41:929-935.
  • 2Mitra S K.Common solutions to a pair of linear matrix equations A1 XB1 = C1,A2 XB2 = C2[J].Proc Cambridge Philos Soc,1973,74:213 -216.
  • 3Mitra S K,A pair of simultaneous linear matrix equatons and a matrix programming problem[J].Linear Algebra Appl,1990,131:97-123.
  • 4Shinozaki N,Sibuya M.Consistency of a pair of matrix equations with an application[J].Kieo Engrg Rep,1974,27:141-146.
  • 5Vonder Woude J.Feedback decoupling and stabilization for linear systems with an multiple exogenous variable[D].Technical Univ.of Eindhoven,Netherlands,1987.
  • 6Ozgüler A B,Akar N.A common solution to a pair of matrix equations over a principal ideal domain[J].Linear Algebra Appl,1991,144:85-199.
  • 7Jiang Z,Lu Q.Optimal application of a matrix under spectral restriction[J].Math Numer Sinica,1988,1:47-52.
  • 8Peng Z Y,Hu X Y,Zhang L.The inverse problem of bisymmetric matrices[J].Numerical Linear Algebra with Applications,2004,1:59-73.
  • 9Meng T.Experimental Design and Decision Support,in Expert Systems[C]//The Technology of Knowledge Management and Decision Making for the 21st Century,Leondes:Academic Press.2001.
  • 10Peng Y X,Hu X Y,Zhang L.An iteration method for the symmetric solutions and the optimal appromation solution of the matrix equation AXB =C[J].Applied Mathematics and Computation,2005,160(3):763-777.

同被引文献27

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部