期刊文献+

基于v-SVR的短期电力负荷预测 被引量:1

Power system load forecastingbased on v-support vector regression
下载PDF
导出
摘要 提出了一种改进支持向量机(v-SVR)的电力系统短期负荷预测方法;将RBF和多项式函数作为核函数,进行了预测研究。研究结果表明,方法要比BP和模糊聚类方法具有很高的预测精度,方法是可行和有效的。 A new short-term load forecasting method for power system based on Support Vector Machine is presented. Using the polynomial function and radial base function as kernel function, the research of applying the SVM method to power system load forecasting,The forecasted results are compared with those BP artificial neural network method and Fuzzy Cluster method, and it is shown that the presented forecasting method is more accurate. Applying the presented method to actual load forecasting, the comparison among the forecasted results and the true shows that presented method is feasible and effective.
出处 《东北电力大学学报》 2007年第2期43-47,共5页 Journal of Northeast Electric Power University
关键词 短期负荷预测 支持向量 v-SVR(Support Vector Regression)预测 核函数 Support Vector Machine Kernel function Short-term load forecasting
  • 相关文献

参考文献13

二级参考文献29

  • 1刘晨辉.电力系统负荷预报理论与方法[M].哈尔滨:哈尔滨工业大学出版社,1987..
  • 2[1]T. Masters ,Neural,Novel& Hybird Algorithms for Tim Series Pre-diction[M], John Wiley & Sons. Inc., 1995.
  • 3[2]A. D. Papalexopoulos and T. C. Hesterberg , A regression based approach to short term system load forecasting[C], Proceedings of 1989 PICA Conference , 1989:414-423,
  • 4[3]K. L. Ho , Y. Y. Hsu , C. F. Chen , T. E. Lee , C. C. Liang , T . S. Lai , and K. K. Chen , Short term load foreasting of Taiwan power system using a knowledge-based expert system[J], IEEE Tans.on Power Systems , 1990,5(4):1214-1221.
  • 5[4]A.M. Lanchlan , An improved novelty criterion for resource allocating networks[C] , IEE ,Artifical Neural Networks , Conference Publication , 1997:440:48-52
  • 6[5]D.Srinivasan, S.S.Tan , C.S.Chang and E.K.Chan ,Practical im-plentation of a hybrid fuzzy neural network for one-day-ahead load forecasting[J], IEE Proc.-Gener. Transm,1998.11(6):687-692.
  • 7[6]V.N. Vapnik ,The nature of statistical learning theory[M], New York: Springer, 1999.
  • 8[7]A. Smola and B. Scholkopf , A tutorial on support vector regression[M], NeuroCOLT Tech. Rep. TR 1998-030, Royal Holloway College , London , U.K., 1998.
  • 9[8]J.C. Platt , Fast training of support vector machines using sequential optimization , in B. Scholkopf , C. Burges , and A. Smola. Advances in kernel methods: support vector machines[M], Cambridge, MA: MIT Press, 1998.
  • 10[9]S.K.Shevade , S.S. Keerthi , C. Bhattacharyy and K.R.K. Murthy , Im-provements to SMO algorithm for SVM regression[J], IEEE Trans. on Neural Networks,2000,11(5): 1188-1193.

共引文献212

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部