期刊文献+

非完备策略的演化少数者博弈模型研究 被引量:1

Study of Evolutionary Minority Game Model with Incomplete Strategies
下载PDF
导出
摘要 提出了一种基于非完备策略的演化少数者博弈模型,它在演化的同时允许参与者的策略包含部分随机位,并且规定当主规则随机选择时,由次规则顶替指导。对比分析和数值模拟表明,新模型由于在策略结构上采用“缺席的等级制度”,其性能相对于普通演化MG模型有显著提升,能够以更小的记忆步长和更稳定的策略组成,进化到一个近乎理想的协作状态。 This paper proposes a new model of evolutionary incomplete minority game (EIMG), which features a default hierarchy of rules with evolution. It introduces random bits into strategies of agents and is capable of applying the secondary rule in the absence of the primary one. Analysis of the numerical experiment results indicates that, in comparison with the evolutionary minority game (EMG) model, the EIMG model can greatly improve the overall performance and evolve to an approximate ideal status very soon with less memory steps and more stable combination of strategies.
作者 杨城 孙世新
出处 《计算机工程》 CAS CSCD 北大核心 2007年第11期26-28,共3页 Computer Engineering
关键词 少数者博弈 演化模型 自组织系统 缺席的等级制度 Minority game (MG) Evolutionary model Self-organized system Default hierarchy
  • 相关文献

参考文献10

  • 1Challet D,Zhang Y C.Emergence of Cooperation and Organization in an Evolutionary Game[J].Physica A,1997,246(3):407-418.
  • 2Challet D,Zhang Y C.On the Minority Game:Analytical and Numerical Studies[J].Physica A,1998,256(3):514-532.
  • 3Johnson N F,Hui P M.Self-organized Segregation within an Evolving Population[J].Phys.Rev.Lett.,1999,82(16):3360-3362.
  • 4Li Yi,Riolo R,Savit R.Evolution in Minority Games I:Games with a Fixed Strategy Spaces[J].Physica A,2000,276(1):234-264.
  • 5Li Yi,Riolo R,Savit R.Evolution in Minority Games II:Games with Variable Strategy Spaces[J].Physica A,2000,276(1):265-283.
  • 6Chow F K,Chau H F.Multiple Choice Minority Game[J].Physica A,2003,319(1-4):601-615
  • 7Moelbert S,Rios P D L.The Local Minority Game[J].Physica A,2002,303(1):217-225.
  • 8Caridi I,Ceva H.The Minority Game with Interactions[J].Physica A,2004,339(3):574-582.
  • 9Waldrop M M.Complexity:The Emerging Science at the Edge of Order and Chaos[M].New York:SDX Joint Publishing Co.,1995.
  • 10Smith R E,Goldberg D E.Reinforcement Learning with Classifier Systems:Adaptive Default Hierarchy Formation[J].Applied Artificial Intelligence,1992,6(1):79-102.

同被引文献4

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部