期刊文献+

海难事故的数据挖掘 被引量:10

Data Mining in Shipwreck Data Warehouse
下载PDF
导出
摘要 分析了建立海难数据仓库的意义,提出了海难数据仓库的雪花模型,对Aprioir算法进行了改进,用改进后的算法实现了海难数据的关联规则和频繁模式挖掘,用改进的有向图方法实现了关联规则的可视化表示。结果表明,利用数据挖掘技术对海难历史数据作深层次分析,克服了传统统计分析方法的局限性,可挖掘出大量的知识,为以后的航海安全提供借鉴。 This paper analyzes the meaning of data mining in shipwreck data, improves the Apriori algorithm and applies it into finding frequent patterns of shipwreck data warehouse which is organized as a snowflake schema while improving direct rule graph to visualize the association rules. Research result shows that data mining technology for further research on historical shipwreck data can overcome the limitations of the traditional statistics and analysis and can mine a lot of knowledge so that some references can be provided for future navigation safety.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第11期34-36,共3页 Computer Engineering
关键词 APRIORI 关联规则 数据挖掘 海难 可视化 Apriori Association rule Data mining Shipwreck Visualization
  • 相关文献

参考文献4

  • 1Polese G,Troiano M,Tortora G.A Data Mining Based System Supporting Tactical Decisions[C]//Proceedings of the 14^th International Conference on Software Engineering and Knowledge Engineering.2002.
  • 2Borgelt C,Kruse R.Induction of Association Rules:Apriori Implementation[C]//Proc.of the 14^th Conf.on Computational Statistics,Berlin,Germany.2002.
  • 3Lee Chang-Hung,Chen Ming-Syan,Member S,et al.Progressive Partition Miner:An Efficient Algorithm for Mining General Temporal Association Rules[J].IEEE Transactions on Knowledge and Data Engineering,2003,15(4).
  • 4吉根林,韦素云,曲维光.基于平行坐标的关联规则可视化新技术[J].计算机工程,2005,31(24):87-89. 被引量:5

二级参考文献8

  • 1Wong P C, Whitney P, Thomas J. Visualizing Association Rules for Text Mining[C]. In: Proc. of the 1999 IEEE Symposium on Information Visualization, Richland, USA, 1999:120-123.
  • 2Ong K H, Ong K L, Ng W K, et al. Crystalclear: Active Visualization of Association Rules[C]. In: International Workshop on Active Mining, in Conjunction with IEEE International Conference on Data Mining, Maebashi, Japan, 2002-12.
  • 3Hofmann H, Siebes A, Wilhelm A. Visualizing Association Rules with Interactive Mosaic Plots[C]. In: Proc. of 6th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining, Boston, USA,2000-08:227-235.
  • 4Yang L. Visualizing Frequent Itemsets, Association Rules, and Sequential Patterns in Parallel Coordinates[C]. In: Proc. of Int'l Conf.Computational Science and Its Applications, Montreal, Canada,2003-05:21-30.
  • 5Yang L. Pruning and Visualizing Generalized Association Rules in Parallel Coordinates[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(1): 60-70.
  • 6Techapichetvanich K, Datta A. VisAR: A New Technique for Visualizing Mined Association Rules[C]. In: Proc. of 1st Int'l Conf.Advanced Data Mining and Applications, 2005:88-95.
  • 7Hetzler B, Harris W M, Havre S, et al. Visualizing the Full Spectrum of Document Relationships[C]. In: Proc. of 5th Int'l Conf. Society for Knowledge Organization. Wurzburg, Verlag, 1998:168-175.
  • 8Techapichetvanich K, Datta A. Visual Mining of Market Basket Association Rules[C]. In: Proc. of 2004 Int'l Conf. Computational Science and Its Applications, Assisi, Italy, 2004-05:479-488.

共引文献4

同被引文献81

引证文献10

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部