期刊文献+

一种基于码本的监控视频运动目标检测算法 被引量:8

Codebook-based Algorithm for Moving Object Detection from Surveillance Video
下载PDF
导出
摘要 针对监控系统获得的彩色视频序列,根据连续采样值的颜色相似度及其亮度范围,将背景像素值量化后用码本表示,利用减背景的思想对新输入的像素值与其对应位置的码本作比较判断,提取出前景运动目标像素。该算法计算复杂度小、占内存少,能够在存在前景运动的过程中提取背景,并能处理光照变化。 This paper proposes a background modeling and subtraction algorithm to detect moving objects from color video sequence captured by surveillance system. Background values are quantized into codebooks with respect to color distortion and brightness distortion. Pixel values of new frames are compared with the codebooks to identify foreground pixels. The algorithm is efficient in computation and takes up less memory. It can also handle scenes containing moving backgrounds and illumination variations.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第14期27-29,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60273066)
关键词 减背景 背景码本 监控视频 目标检测 background subtraction background codebook surveillance video object detection
  • 相关文献

参考文献6

  • 1代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 2Lipton A,Fujiyoshi H,Patil R.Moving Target Classification and Tracking from Real-time Video[C]//Proc.of IEEE Workshop on Applications of Computer Vision,Princeton,NJ.1998:8-14.
  • 3Cutler R,Davis L.View-based Detection[C]//Proc.of Int.Conf.on Pattern Recognition,Brisbane,Australia.1998:495-500.
  • 4Horprasert T,Harwood D,Davis L S.A Statistical Approach for Real-time Robust Background Subtraction and Shadow Detection[C] //Proc.of IEEE Frame-Rate Applications Workshop,Kerkyra,Greece.1999.
  • 5Stauffer C,Grimson W.Adaptive Background Mixture Models for Real-time Tracking[C]//Proc.of Int.Conf.on Computer Vision and Pattern Recognition,Colorado,USA.1999:246-252.
  • 6Kim K,Chalidabhongse T H,Harwood D,et al.Background Modeling and Subtraction by Codebook Construction[C]//Proc.of Int.Conf.on Image Processing,Singapore.2004:3061-3064.

二级参考文献47

  • 1Kilger M.A shadow handler in a video-based real-time traffic monitoring system[A].In:Proceedings of IEEE Workshop on Applications of Computer Vision[C],Palm Springs,CA,USA,1992:1060 ~ 1066.
  • 2Elgammal A.Background and foreground modeling using nonparametric kernel density estimation for visual surveillance[J].Proceedings of IEEE,2002,90 (7):1151 ~ 1163.
  • 3Friedman N,Russell S.Image segmentation in video sequences:A probabilistic approach[A].In:Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence[C],Rhode Island,USA,1997:175 ~ 181.
  • 4Grimson W,Stauffer C,Romano R.Using adaptive tracking to classify and monitor activities in a site[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Santa Barbara,CA,USA,1998:22 ~29.
  • 5Stauffer C,Grimson W.Adaptive background mixture models for realtime tracking[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Fort Collins,Colorado,USA,1999,2:246~252.
  • 6Gao X,Boult T,Coetzee F,et al.Error analysis of background adaption[A].In:Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition[C],Hilton Head Isand,SC,USA,2000:503 ~510.
  • 7Power P W,Schoonees J A.Understanding background mixture models for foreground segmentation[A].In:Proceedings of Image and Vision Computing[C],Auckland,New Zealand,2002:267 ~271.
  • 8Lee D S,Hull J,Erol B.A Bayesian framework for gaussian mixture background modeling[A].In:Proceedings of IEEE International Conference on Image Processing[C],Barcelona,Spain,2003:973 ~ 976.
  • 9Rittscher J,Kato J,Joga S,et al.A probabilistic background model for tracking[A].In:Proceedings of European Conference on Computer Vision[C],Dublin,Ireland,2000,2:336 ~ 350.
  • 10Stenger B,Ramesh V,Paragios N,et al.Topology free hidden markov models:Application to background modeling[A].In:Proceedings of IEEE International Conference on Computer Vision[C],Vancouver,BC,Canada,2001,1:294 ~301.

共引文献168

同被引文献84

引证文献8

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部