期刊文献+

基于改进SVM方法的入侵检测 被引量:8

Intrusion Detection Based on Improved SVM Algorithm
下载PDF
导出
摘要 在入侵检测应用中,SVM能够在小样本条件下保持良好的检测状态。该文提出了一种改进的SVM方法,其在特定概率指导下删减训练集中的非有效样本,取得了更优的分类效果,改善了传统SVM训练和分类中存在的高资源占用和时耗过高的状况。对DARPA数据的检测实验表明,该方法在入侵检测上有较好的表现。 In the application of intrusion detection, SVM maintains fine detection status on the condition of small-scale dataset. This paper proposes an improved SVM method. Through cutting non-effective records from training set under the guidance of specific probabilities, it gains better classification results and greatly ameliorates the situation of high resources occupation and time cosumption in traditional SVM training and classification. The tests on DARPA dataset show that this method performs well in intrusion detection.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第14期151-153,共3页 Computer Engineering
关键词 入侵检测 支持向量机 缩减训练集 intrusion detection support vector machine(SVM) reduced training set
  • 相关文献

参考文献6

  • 1Vapnik V N 张学工.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 2Burges C.A Tutorial on Support Vector Machines for Pattern Recognition[J].Data Mining and Knowledge Discovery,1998,2(2):1-43.
  • 3Nello C,John S T.An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[M].Cambridge University Press,2000.
  • 4李红莲,王春花,袁保宗,朱占辉.针对大规模训练集的支持向量机的学习策略[J].计算机学报,2004,27(5):715-719. 被引量:53
  • 5Opitz D W,Maclin R.Popular Ensemble Methods:An Empirical Study[J].Artificial Intelligence Research,1999,11:169-198.
  • 6KDD Cup 1999 Data[EB/OL].1999-10.http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

二级参考文献9

  • 1Hearst M.A., Dumais S.T., Osman E., Platt J., Scholkopf B.. Support vector machines. IEEE Intelligent Systems, 1998, 13(4): 18~28
  • 2Vapnik V.N.. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 1999, 10(5): 988~999
  • 3Vapnik V.N.. Statistical Learning Theory.2nd ed..New York: Springer-Verlag, 1999
  • 4Müller Klaus-Robert, Mika Sebastian, Rtsch Gunnar, Tsuda Koji, Schlkopf Bernhard. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 2001, 12(2): 181~201
  • 5Burges C.J.C.. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121~167
  • 6Ke Hai-Xin,Zhang Xue -Gong.Editing support vector machines. In: Proceedings of the International Joint Conference on Neural Networks, Washington, DC, 2001, 2: 1464~1467
  • 7张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2272
  • 8张鸿宾,孙广煜.近邻法参考样本集的最优选择[J].电子学报,2000,28(11):16-21. 被引量:8
  • 9李红莲,王春花,袁保宗.一种改进的支持向量机NN-SVM[J].计算机学报,2003,26(8):1015-1020. 被引量:71

共引文献225

同被引文献62

引证文献8

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部