期刊文献+

一种新的自适应尺度近邻分类器

A New Adaptive Metric Nearest Neighbor Classifier
下载PDF
导出
摘要 基于多类别监督学习,提出了一种局部自适应最近邻分类器。此方法使用椭球聚类学习方法估计有效尺度,用于拉长特征不明显的维,并限制特征重要的维。在修正的领域中,类条件概率按预期近似为常数,从而得到更好的分类性能。实验结果显示,对多类问题,这是一种有效且鲁棒的分类方法。 This paper proposes a locally adaptive nearest neighbor classification method based on supervised learning style which works well for the classes more than two. In this method, the ellipsoid clustering learning method is applied to estimate an effective metric for producing neighborhood that is elongated along less discriminating feature dimensions and constricted along most discriminating ones. As a result, the class conditional probabilities can be expected to be approximately constant in the modified neighborhoods, whereby better classification performance can be achieved. The experimental results show that this is an efficient and robust classification method for multi-class problems.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第14期190-191,197,共3页 Computer Engineering
关键词 监督椭球聚类学习 最近邻分类器 多类 supervised ellipsoid clustering nearest neighbor classifiers multi-class
  • 相关文献

参考文献8

  • 1Cover T M,Hart P E.Nearest Neighbor Pattern Classification[J].IEEE Transactions on Information Theory,1967,13(1):21-27.
  • 2Domeniconi C,Gunopulos D.Large Margin Nearest Neighbor Classifiers[J].IEEE Transaction on Neural Networks,2005,16(4):899-909.
  • 3Jing Peng,Heisterkamp D R.LDA/SVM Driven Nearest Neighbor Classifiers[J].IEEE Transaction on Neural Networks,2003,14(4):940-942.
  • 4Domeniconi C,Jing Peng.Locally Adaptive Metric Nearest Neighbor Classification[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2002,24(9):1281-1285.
  • 5Hastie T,Tibshirani R.Discriminant Adaptive Nearest Neighbor Classification[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,1996,18(6):607-615.
  • 6Kositsky M,Ullman S.Learning Class Regions by the Union of Ellipsoids[C]//Proceedings of the 13^th International Conference on Pattern Recognition.1996:750-757.
  • 7Man-Wai Mak,Sun-Yuan Kung.Estimation of Elliptical Basis Function Parameters by the EM Algorithm with Application to Speaker Verification[J].IEEE Transaction on Neural Networks,2000,11(4):961-969.
  • 8Anagnostopoulos G C,Georgiopoulos M.Hypersphere ART and ARTMAP for Unsupervised and Supervised,Incremental Learning[C] //Proc.of IEEE-INNSENNS International Joint Conference on Neural Networks.2000-07:59-64.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部