期刊文献+

一种新的蚁群优化算法信息素更新策略及其性能分析 被引量:2

Analysis on Performance of Novel Pheromone Trails Update Strategy in Ant Colony Optimization
下载PDF
导出
摘要 针对蚁群优化算法的关键步骤——信息素轨迹更新过程进行了深入分析。通过理论上的证明和实验验证,提出了信息素轨迹更新中存在着一个利用—探索困境;在此基础上针对这个现象提出了一种基于Metrop-olis接受准则的信息素更新策略,并通过在不同规模的TSP上的实验,证明了这种新策略的有效性。 An insight into the key procedure of ant colony optimization algorithm was provided. A phenomena called exploration-exploitation dilemma in the pheromone trail update was originally proposed on the basis of the theoretical arguments and experimental results. Hence a novel pheromone trail update strategy was presented based on the principle of Metropolis rule. Experiments on TSP instances with various dimension fully proved the validity of this strategy.
出处 《计算机应用研究》 CSCD 北大核心 2007年第7期86-88,91,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60472099)
关键词 蚁群优化算法 信息素更新策略 利用-探索困境 Metropolis接受准则 ant colony optimization(ACO) pheromone update strategy exploration-exploitation dilemma Metropolis rule
  • 相关文献

参考文献12

  • 1DORIGO M,MANIEZZO V,COLORNI A.Positive feedback as a search strategy[R].Milano:Politecnico di Milano,1991.
  • 2DORIGO M,MANIEZZO V,COLORNI A.The ant system:optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man,and Cybernetics:Part B,1996,26(1):29-42.
  • 3DORIGO M.Optimization,learning,and natural algorithms[D].Milano:Politecnico di Milano,1992.
  • 4GAMBARDELLA L M,DORIGO M.Ant-Q:a reinforcement learning approach to the traveling salesman problem:proc.of the 11th International Conference on Machine Learning[C].San Francisco:Morgan Kaufmann,1995:252-260.
  • 5GAMBARDELLA L M,DORIGO M.Solving symmetric and asymmetric TSPs by ant colonies:proc.of IEEE International Conference on Evolutionary Computation[C].Piscataway:IEEE Press,1996:622-627.
  • 6DORIGO M,GAMBARDELLA L M.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation,1997,1(1):53-66.
  • 7BULLNHEIMER B,HARTL R F,STRAUSS C.A new rank based version of the ant system:a computational study[J].Central European Journal for Operations Research and Economics,1999,7(1):25-38.
  • 8ST(U)TZLE T,HOOS H H.Max-min ant system[J].Future Generation Computer Systems,2000,16(8):889-914.
  • 9ST(U)TZLE T,DORIGO M.A short convergence proof for a class of ACO algorithms[J].IEEE Transactions on Evolutionary Computation,2002,6(4):358-365.
  • 10BLUM C,ROLI A,DORIG M.The hyper-cube framework for ant colony optimization[J].IEEE Transactions on Systems,Man and Cyberetics:Part B,2004,34(2):1161-1172.

同被引文献31

  • 1胡小兵,黄席樾,张著洪.一种新的自适应蚁群算法及其应用[J].计算机仿真,2004,21(6):108-111. 被引量:19
  • 2王子君,赵卫国,王利英,王江生.基于人工免疫-蚁群算法的平面QoS路由模型[J].河北工程大学学报(自然科学版),2007,24(3):76-79. 被引量:1
  • 3Raedt L D.Inductive logic programming[M]//Encyclopedia of machine learning.New York:Springer,2010:529-537.
  • 4Quinlan J R,Cameron-Jones R M.Induction of logic programs:FOIL and related systems[J].New Generation Computing,1995,13:287-312.
  • 5D?eroski S.Handling imperfect data in inductive logic programming[C]//Proceedings of the 4th Scandinavian Conference on Artificial intelligence.Amsterdam:IOS Press,1993:111-125.
  • 6Landwehr N,Kersting K,Raedt L D.n FOIL:integrating Naive Bayes and FOIL[J].Journal of Machine Learning Research,2007,8:481-507.
  • 7Landwehr N,Passerini A,Raedt L D,et al.Fast learning of relational kernels[J].Machine Learning,2010,78(3):305-342.
  • 8Muggleton S.Inverse entailment and Progol[J].New Generation Computing,Special Issue on Inductive Logic Programming,1995,13(3/4):245-286.
  • 9Srinivasan A.The aleph manual[EB/OL].(2007-03-13)[2015-01-03].http://www.cs.ox.ac.uk/activities/machlearn/Aleph/.
  • 10Nienhuys-Cheng S,Wolf R.Foundations of inductive logic programming[M].[S.l.]:Springer-Verlag,1997:233-234.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部