期刊文献+

融合用户和项目相关信息的协同过滤算法研究 被引量:5

Research on Collaborative Filtering Algorithm Based on Fusing User and Item's Correlative Information
下载PDF
导出
摘要 针对User-based协同过滤和Item-based协同过滤算法的不足,提出了一种新的推荐算法。该算法融合用户-项目评分数据集所包含的用户相关和项目相关的信息来推荐商品,并且利用模糊聚类技术分别将相似的项目和相似的用户聚类,改善传统推荐算法的数据稀疏性和可扩展性问题。实验结果表明,将用户相关和项目相关的信息融合能够提供更好的推荐。 Aiming at the disadvantages of user-based collaborative filtering and item-based collaborative filtering algorithms, the paper proposed a novel recommendation algorithm that generated item's recommendation by fusing user and item's correlative information inhering in the user-item rating dataset. The algorithm also involved the fuzzy clustering of similar items and similar users to improve the data sparsity and scalability of traditional collaborative filtering algorithms. Experiments showed a better recommendation could be provided by fusing user and item's correlative information.
出处 《武汉理工大学学报》 EI CAS CSCD 北大核心 2007年第7期160-163,共4页 Journal of Wuhan University of Technology
基金 国家自然科学基金(70572079)
关键词 协同过滤 模糊聚类 推荐系统 信息融合 collaborative filtering fuzzy clustering recommendation system information fusion
  • 相关文献

参考文献5

  • 1Weng L T,Xu Y,Li Y F.An Improvement to Collaborative Filtering for Recommender Systems[A].Proceedings of the 2005 International Conference on Computational Intelligence for Modelling,Control and Automation,and International Conference on Intelligent Agents,Web Technological and Internet Commerce[C].Washington:IEEE Computer Society,2005:792-795.
  • 2Breese J,Heckerman D,Kadie C.Empirical Analysis of Predictive Algorithms for Collaborative Filtering[A].Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence[C].Madison:Morgan Kaufmann,1998:43-52.
  • 3Herlocker J L,Konstan J A,Terveen L G,et al.Evaluating Collaborative Filtering Recommender Systems[J].ACM Trans Inf Syst,2004(1):5-53.
  • 4Sarwar B,Karypis G,Konstan J.Item-based Collaborative Filtering Recommendation Algorithms[A].Proceedings of the 10th International World Wide Web Conference[C].New York:ACM,2001:285-295.
  • 5张海燕,丁峰,姜丽红.基于模糊聚类的协同过滤推荐方法[J].计算机仿真,2005,22(8):144-147. 被引量:25

二级参考文献2

共引文献24

同被引文献41

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部