期刊文献+

基于神经网络的速度传感器幅频特性改进 被引量:1

Amplitude frequency characteristics improvement based on ANN for velocity transducer
下载PDF
导出
摘要 为了降低磁电式振动速度传感器的下限测量频率,以实现超低频振动速度测量,提出改进其幅频特性的函数连接型人工神经网络(FLANN)方法。该方法以磁电式振动速度传感器动态试验数据为基础,通过FLANN训练来确定传感器动态补偿网络,以改善它的幅频特性。介绍了原理和FLANN权值调整的算法,给出用FLANN建立的磁电式振动速度传感器动态补偿网络的数学模型。结果表明:这种幅频特性的改进方法具有精度高、鲁棒性好,并能在线修正等优点,在工程测试领域有重要的实用价值。 The method of amplitude frequency characteristics improvement is presented to realize ultra-low frequency vibration measurement based on functional link artificial neural network (FLANN) for magnet-electrical vibration velocity transducer. In this method, a dynamic compensation network can he set up according to measurement data of dynamic response of magnet-electrical vibration velocity transducer. The dynamic compensation network parameters are trained by FLANN. The principle and algorithms of weight values of FLANN are introduced and the dynamic compensating mathematics model is given for magnet-electrical vibration velocity transducer. The results show that the proposed method has high precision, strong robustness, on-line correction ability practical value in engineering measurement field.
出处 《传感器与微系统》 CSCD 北大核心 2007年第7期75-76,79,共3页 Transducer and Microsystem Technologies
基金 江苏省高等学校自然科学基金资助项目(04KJD140033)
关键词 磁电式振动速度传感器 函数连接型神经网络 固有频率 幅频特性 补偿 magnet-electrical vibration velocity transducer functional link artificial neural network(FLANN) natural frequency amplitude frequency characteristics compensation
  • 相关文献

参考文献6

二级参考文献6

共引文献17

同被引文献11

  • 1俞阿龙,黄惟一.振动速度传感器幅频特性改进方法的研究[J].自动化仪表,2004,25(5):4-7. 被引量:10
  • 2汪晓东,张浩然,张长江,汪金山,蒋敏兰,武林.基于支持向量机的传感器非线性动态补偿方法[J].测试技术学报,2006,20(2):184-188. 被引量:6
  • 3Daboczi T, Kollar I. Multiparameter optimization of inverse filtering algorithms[J]. IEEE Transactions on Instrumentation and Measurement, 1996, 45(2). 417-421.
  • 4Yu Dongchuan, Meng Qinghao, Wang Jiang, et al. Neural network based left-inverse system dynamic decoupling & com- pen~ting method of muti-dimension sensors[J]. American Control Conference, 2005, 6(3) : 1727-1732.
  • 5Jafaripanah M, AI-Hashimi B, White N. Application of analog adaptive filters for dynamic sensor compensation [J ]. IEEE Transactions on Instrumentation and Measurement, 2005, 54(1): 245-251.
  • 6Dabdczi T. Uncertainty of signal reconstruction in the case of jittery and noisy measurements[J]. IEEE Transactions on Instrumentation and Measurement, 1998, 47(5): 1062-1066.
  • 7Patra J, Kot A. Nonlinear dynamic system identification using chebyshev functional link artificial neural networks [ J ]. IEEE Transactions on Systems, Man, and Cybernetics-Part B. Cybernetics, 2002, 32(4): 505-511.
  • 8Jafaripanah M, A1-Hashimi B, White N. Load cell response correction using analog adaptive techniques[J]. IEEE Int. Symp. Circuits SysterrLs ( ISCAS), 2003 : 752-755.
  • 9Piskorowski J, Barcinski T. Dynamic compensation of load cell response, a time-varying approach[J]. Mechanical Systen~s and Signal Processing, 2008, 22(7) : 1694-1704.
  • 10吴德会,杨世元,董华.基于最小二乘支持向量机的传感器动态补偿方法[J].计量学报,2007,28(4):344-348. 被引量:6

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部