期刊文献+

MgO∶LiNbO_3晶体中超短中红外非共线相位匹配光参量放大过程角度的优化选择 被引量:1

Angle Optimization for Ultra-Short Mid-Infrared Non-Collinear Phase Matching Optical Parametric Amplificauion in MgO∶LiNbO_3 Crystal
原文传递
导出
摘要 计算了MgO:LiNbO3中超短中红外光参量放大(OPA)过程中晶体的相位匹配角与非共线角的优化选择。结果表明,对于800 nm波长的抽运光,信号光波长为1053 nm时,非共线角α优化在1.74°~2°之间;当信号光波长在1046-1067nmnm变化时,α在1.05°~2.18°之间,并且当信号光波长为1057nm,α=1.76°时,可实现三波间群速度的完全匹配。同时还得到了抽运光中心波长在780-810nm之间变化时,实现完全群速度匹配时的注入信号光波长与对应的中红外光以及相应的非共线角与相位匹配角。 The phase matching angle and the non-collinear angle for ultrashort and mid-infrared optical parametric amplification (OPA) in MgO: LiNbO3 are calculated. With pump light wavelength fixed at 800 nm, the noncollinear angle should be optimized between 1.74° and 2° when the seeded signal wavelength is 1053 nm, and the non -collinear angle should be optimized between 1.05° and 2.18° when the seed signal wavelength changes between 1046 and 1067 nm. Especially, when the seeded signal wavelength is 1057 nm and the non-collinear angle is 1.76°, the group velocities mismatching can be almost completely compensated with the pump light wavelength fixed at 800 nm. The series of signal light wavelength, mid-infrared light phase matching angle and non-collinear angle are also achieved when the group velocities are almost completely compensated with the pump light changing between 780 and 810 nm.
出处 《中国激光》 EI CAS CSCD 北大核心 2007年第7期915-919,共5页 Chinese Journal of Lasers
关键词 非线性光学 超短中红外激光 群速度匹配 非共线相位匹配光参量放大 MgO:LiNbO3晶体 nonlinear optics ultra-short mid-infrared laser group velocity matching non-collinear phase matching optical parametric amplification MgO: LiNbO3 crystal
  • 相关文献

参考文献11

二级参考文献23

共引文献38

同被引文献15

  • 1姚江宏,薛亮平,颜博霞,贾国治,许京军,张光寅.周期极化掺镁铌酸锂晶体的光学参量振荡[J].中国激光,2007,34(2):209-213. 被引量:23
  • 2Werle P, Slemr F, Maurer K et al.. Near and mid infrared laser-optical sensors for gas analysis [J]. Opt. Lasers Engng. 2002, a7:101-114.
  • 3Cornelia F, Markus W. Sigrist. Mid-IR difference frequency generation[J]. Topics. Appl. Phys. 2003, 89:97-143.
  • 4Chen W, Mouret G, Boucher D et al.. Mid infrared trace gas detection using continuous-wave difference frequency generation in periodically poled RbTiOAsO4[J]. Appl. Phys. B, 2001,72: 873-876.
  • 5Richter D, Fried A, Wert B P et al.. Development of a tunable mid IR difference frequency laser source for highly sensitive airborne trace gas detection[J]. Appl. Phys. B, 2002, 75: 281-288.
  • 6Fried A, Henry B, Wert B et al.. Laboratory, ground-based, and airborne tunable diode laser systems:performance characteristics and applications in atmospheric studies[J]. Alpl. Phys. B, 1998, 67:317-330.
  • 7Gmachl C, Straub A, Colombelli R et al.. Single-mode, tunable distributed-feedback and multiple wavelength quantum cascade lasers[J]. IEEE Quant. Electron. , 2002, 88(6) :569-581.
  • 8Armin L. Quantum cascade lasers, systems, and applications in Europe[C]. SPIE,2005, 5732:122-133.
  • 9Zhang Xingbao, Yao Baoquan, Wang Yuezhu et al.. Middleinfrared intracavity periodically MgO: LiNbOa optical parametric oscillator. Chin. Opt. Lett. , 2007, 5(7):426-427.
  • 10Jundt D. Temperature dependent sellmeier equation for the index of refraction, ne, in congruent lithium niobate[J]. Opt. Lett. , 1997, 22(20) :1553--1555.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部