期刊文献+

硫化氢在大鼠急性支气管哮喘模型中的变化及意义 被引量:17

The regulatory effect of endogenous hydrogen sulfide on acute asthma
原文传递
导出
摘要 目的观察卵白蛋白(OVA)诱导的大鼠急性支气管哮喘(简称哮喘)模型,内源性硫化氢(H_2S)生成的变化以及应用外源性硫氢化钠(NaHS,H_2S 供体)处理对哮喘大鼠的影响,探讨气体信号分子 H_2S 在哮喘发病中的作用。方法 24只健康 SD 大鼠按随机数字表法分为正常对照组、哮喘组和 NaHS 干预组,每组8只。致敏后28 d 测定所有大鼠肺功能并观察大鼠支气管周围炎性细胞浸润程度并进行评分;采用敏感硫电极测定血浆及肺组织 H_2S 的生成量;采用酶促反应法测定大鼠肺组织匀浆中胱硫醚-γ-裂解酶(CSE)活性;用 Western blot 法测定大鼠肺组织中 CSE 蛋白含量(每组3只)。结果哮喘组大鼠呼气峰流量(PEF)、血浆及肺组织中 H_2S 分别为(2.90±0.70)L/s、(10±3)、(4.9±1.3)μmol/L,对照组分别为(6.50±0.10)L/s、(54±10)、(24.1±8.0)μmol/L,NaHS 干预组大鼠分别为(5.70±0.50)L/s、(17±4)、(15.3±4.0)μmol/L,3组间比较差异有统计学意义(F 值分别为112.13、110.10、27.34,P 均<0.01);哮喘组大鼠肺组织匀浆每毫克蛋白中 CSE 活性和肺组织匀浆中 CSE 蛋白含量[用相对吸光度(A)值表示]分别为(1.00±0.10)nmol·min^(-1)·mg^(-1)、0.20±0.10,正常对照组分别为(1.80±0.10)nmol·min^(-1)·mg^(-1)、0.90±0.30,NaHS 干预组大鼠分别为(1.60±0.20)nmol·min^(-1)·mg^(-1)、1.10±0.20,3组间比较差异有统计学意义(F 值分别为79.39、12.28,P 均<0.05);光镜下支气管周围炎性细胞浸润程度评分[用中位数(四分位数)]表示,正常对照组为1(0~1)分,哮喘组为3(2~4)分,NaHS 干预组为1(1~2)分,3组间比较差异有统计学意义(H=16.93,P<0.01);哮喘组肺组织 H_2S 含量与 PEF 呈正相关(r=0.74,P<0.01);与光镜下支气管周围炎性细胞浸润程度评分呈负相关(r=-0.64,P<0.01)。结论内源性 H_2S 参与了大鼠急性哮喘发病过程,外源性 NaHS 可以减轻哮喘气道炎症,对哮喘急性发病起到保护作用。 Objective To study the changes of endogenous hydrogen sulfide (H2 S) and the effect of exogenously applied H2S on ovalbumin-induced acute asthma. Methods Twenty-four Male SD rats were randomly divided into a control group ( n = 8 ), an asthma group ( n = 8 ) and a Naris group ( n = 8 ). Pulmonary function was measured, and the pulmonary pathology changes, the content of H2 S in lung tissue and plasma and the activity of H2S generating enzymes in lung tissue were detected at the 28 th day after ovalbumin administration. Western blotting was used to detect the endothelial cystathionine-γ-lyase CSE protein in the lung tissues. Results In the asthma group, the peak expiratory flow (PEF) was (2.90 ± 0. 70) L/s, the contents of H2S in the plasma was (10±3) μmol/L, in the lung tissue was (4. 9 ± 1.3) μmol/L. The H2S generating enzyme activity in the lung tissue of the asthma group was ( 1.00 ± 0. 10 ) nmol · min^ -1· mg^-1 pro, and the lung CSE content of the asthma group was significantly lower than that of the control group (6. 50 ± 0. 10) L/s, (54 ± 10), (24. 1 ± 8.0) μmol/L, ( 1.80 ± 0. 10) nmol · min^ -1· mg^-1 ,F=112.13,110. 10 , 27. 34 , 79. 39 ,12. 28 , all P〈0.05). The pulmonary pathology score of the asthma group was 3(2-4), significantly higher than that of the control group [ 1 (0 - 1 ) ,H = 16. 93 ,P 〈 0. 01 ]. In the NariS group, the PEF was (5.70 ±0. 50) L/s, the content of H2S in the plasma was( 17 ± 4) μmol/L, in the lung tissue was( 15. 3± 4. 0) μmol/L, the H2S generating enzyme activity in the lung tissue was (1.60 ± 0. 20) nmol · min^-1 · mg^-1 pro, the lung CSE content of the NariS group was significantly higher than that of the asthma group ( F = 112. 13,110. 10,27. 34,79. 39,12. 28, all P 〈0. 05 ). The pulmonary pathology score of the NariS group was 1 ( 1 - 2 ), significantly lower than that of the asthma group [ 3 (2 - 4 ) score, H = 16. 93, P 〈 0. 01 ]. There was a significantly positive correlation between the content of the content of H2S in lung tissue and PEF ( r = 0. 74, P 〈 0. 01 ). There was a significantly negative correlation between the content of H2S in lung tissue and the pulmonary pathology score (r = -0.64, P 〈 0. 01 ). Conclusion Endogenous H2S is involved in the pathogenesis of asthma in this animal model. Exogenously applied H2S can attenuate inflammation of asthma and exert protective effect from asthma.
出处 《中华结核和呼吸杂志》 CAS CSCD 北大核心 2007年第7期522-526,共5页 Chinese Journal of Tuberculosis and Respiratory Diseases
关键词 硫化氢 哮喘 实验动物 Hydrogen sulfide Asthma Animals, laboratory
  • 相关文献

参考文献18

  • 1Buick JB, Lowry RC, Magee TR. Is a reduction in residual volume a sub-clinical manifestation of hydrogen sulfide intoxication? Am J Ind Med,2000,37:296-299.
  • 2Almeida AF, Guidotti TL. Differential sensitivity of lung and brain to sulfide exposure: a peripheral mechanism for apnea. Toxicol Sci, 1999,50:287-293.
  • 3Rabb HA, Olivenstein R, Issekutz TB, et al. The role of the leukocyte adhesion molecules VLA-4, LFA-1, and Mac-1 in allergic airway responses in the rat. Am J Respir Crit Care Med, 1994,149:1186-1191.
  • 4Lertratanangkoon K,Scimeca JM ,Wei JN. Inhibition of glutathione synthesis with propargylglycine enhances N-acetylmethionine protection and methylation in bromobenzene-treated Syrian hamsters. J Nutr, 1999,129:649-656.
  • 5Takehana Y, Hamano S, Kikuchi S, et al. Inhibitory action of OKY-O46. HCI, a specific TXA2 synthetase inhibitor, on platelet activating factor (PAF)-induced airway hyperresponsiveness of guinea pigs: role of TXA2 in development of PAF-induced nonspecific airway hyperresponsiveness. Jpn J Pharmacol, 1990, 52:621-630.
  • 6Henderson WR Jr, Tang LO, Chu SJ, et al. A role for cysteinyl leukotrienes in airway remodeling in a mouse asthma model. Am J Respir Crit Care Med ,2002,165 : 108-116.
  • 7沈华浩,王绍斌.布地奈德干预对卵白蛋白致敏小鼠抗原激发后气道炎症及气道重塑的影响[J].中华结核和呼吸杂志,2005,28(3):154-159. 被引量:45
  • 8Chunyu Z, Junbao D, Dingfang B, et al. The regulatory effect of hydrogen sulfide on hypoxic pulmonary hypertension in rats. Biechem Biophys Res Commun, 2003,302 : 810-816.
  • 9Zhao W,Zhang J, Lu Y, et al. The vasorelaxant effect of H (2) S as a novel endogenous gaseous K (ATP) channel opener. EMBO J, 2001,20:6008-6016.
  • 10Searcy DG, Les SH. Sulfur reduction by human erythrocytes. J Exp Zool, 1998, 282:310-322.

二级参考文献11

  • 1Bousquet J,Jeffery PK,Busse WW,et al. Asthma:from bronchoconstriction to airways inflammation and remodeling. Am J Respir Crit Care Med,2000,161:1720-1745.
  • 2Zainudin B. Steroid therapy in obstructive airway diseases. Respirology,1997,2:17-31.
  • 3Shen HH,Ochkur SI,McGarry MP,et al. A causative relationship exists between eosinophils and the development of allergic pulmonary pathologies in the mouse. J Immunol,2003,170:3296-3305.
  • 4Shen H,O′Byrne PM,Ellis R,et al. The effects of intranasal budesonide on allergen-induced production of interleukin-5 and Eotaxin,airways,blood,and bone marrow eosinophilia,and eosinophil progenitor expansion in sensitized mice. Am J Respir Crit Care Med,2002,166:146-153.
  • 5Henderson WR Jr,Tang LO,Chu SJ,et al. A role for cysteinyl leukotrienes in airway remodeling in a mouse asthma model. Am J Respir Crit Care Med,2002,165:108-116.
  • 6Vanacker NJ,Palmans E,Kips JC,et al. Fluticasone inhibits but does not reverse allergen-induced structural airway changes. Am J Respir Crit Care Med,2001,163:674-679.
  • 7Stewart AG,Tomlinson PR,Wilson J. Airway wall remodelling in asthma:a novel target for the development of anti-asthma drugs. Trends Pharmacol Sci,1993,14:275-279.
  • 8Trifilieff A,EI-Hashim A,Bertrand C. Time course of inflammatory and remodeling events in a murine model of asthma:effect of steroid treatment. Am J Physiol Lung Cell Mol Physiol,2000,279:L1120-L1128.
  • 9Palmans E,Kips JC,Pauwels RA. Prolonged allergen exposure induces structural airway changes in sensitized rats. Am J Respir Crit Care Med,2000,161:627-635.
  • 10Boulet LP,Laviolette M,Turcotte H,et al. Bronchial subepithelial fibrosis correlates with airway responsiveness to methacholine. Chest,1997,112:45-52.

共引文献127

同被引文献167

引证文献17

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部