期刊文献+

n值逻辑系统MTL_n中命题的程度化方法 被引量:2

Graded method of propositions in n-valued logical system MTL_n
下载PDF
导出
摘要 基于均匀概率空间的无穷乘积,在n值命题逻辑系统MTLn中引入命题的α-真度概念,给出了一般真度推理规则;利用命题的α-真度定义了命题间的α-相似度,进而导出命题集上的一种伪距离,使得在n值命题逻辑系统MTLn中展开近似推理成为可能。 By means of the infinite product of evenly distributed probability space,this paper introduces the theory of α-truth degrees in n-valued propositional logical system MTLn,also,general reference rules with truth degrees are obtained.Moreover,a pseudo-metric on the set of propositions is defined by means of the concept of truth degrees of propositions and this make it possible to develop approximate reasoning in n-valued proposition logic system MTLn.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第21期4-7,共4页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.10331010) 陕西师范大学研究生培养创新基金 兰州理工大学优秀青年基金资助项目。
关键词 α-真度 真度 相似度 伪距离 近似推理 α-troth degree truth degree similarity degree Pseudo-metric approximate reasoning
  • 相关文献

参考文献12

二级参考文献55

  • 1王国俊,傅丽,宋建社.Theory of truth degrees of propositions in two-valued logic[J].Science China Mathematics,2002,45(9):1106-1116. 被引量:18
  • 2王国俊,钱桂生,党创寅.命题演算系统L~*与谓词演算系统κ~*中统一的近似推理理论[J].中国科学(E辑),2004,34(10):1110-1122. 被引量:13
  • 3Zadeh L. A., Outline of a new approach to the analysis of complex systems and decision processes, IEEE Trans. Systems, Man and Cybernet, 1973, 1(1): 28-44.
  • 4Dubois D., Prade H., Fuzzy sets in approximate reasoning I, Fuzzy Sets and Systems, 1991, 40(1): 143-202.
  • 5Pavelka J., On fuzzy logic Ⅰ, Ⅱ, Ⅲ, Zeitschr f Math Logic und Grundlagen d Math., 1979, 25(1): 45-52;119-134; 447-464.
  • 6Ying M. S., The fundamental theorem of ultroproduct in Pavelka's logic, Z. Math. Logic Grundlagen Math.,1992, 38: 197-201.
  • 7Novak V., On the syntactic-semantical completeness of first-order-logic, (Ⅰ), (Ⅱ), Kybernetika, 1990, 26(1):47-66; 26(2): 134-154.
  • 8Novak V., The alternative mathematical model of linguistic semantics and pragmatics, New york: Plenum,1992.
  • 9Xu Y. etc, L-valued propositional logic Lvpl, Information Sciences, 1999, 144: 205-235.
  • 10Xu Y. etc, On semantics of L-valued first order logic Lvfi, Int. J. General Systems, 2000, 29(1): 53-79.

共引文献346

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部