期刊文献+

改进的基于MRF原理的块效应消除算法 被引量:1

Improved de-blocking algorithm based on MRF theory
下载PDF
导出
摘要 基于块的DCT变换是现在应用最广泛的图像与视频压缩变换方法之一,在很多具有重要影响力的图像压缩标准如MPEG、JPEG、H.261中得到应用。通过BDCT变换,可以获得较高的图像压缩率,但是BDCT变换也会损害图像质量,其中块效应就是常见的现象。现存的块效应消除算法或模糊了图像的细节,或达不到较理想的块效应消除效果。在兼顾消除块效应和保护图像细节部分的原则上,将分区思想应用于基于图像马尔可夫随机场(MRF)原理的块效应消除算法中,提出了针对图像边界、纹理区域、平坦区域以及分块边界选择不同的MRF势函数的方法。同时,根据图像的块效应产生的灰度值偏差分布的统计分析结果改进了MRF模型的求解算法,简化了求解过程。对已有的边界检测和图像分区算法进行了改进,应用快速算法,简化了其中对块效应消除结果影响很小的计算过程。实验结果表明,这种算法既保护了图像的细节信息,又达到了良好的消除块效应的效果,并且具有较好的时间效率。 Block DCT is the mostly popular transform method for image and video compression now,applied in many image compression standards with important influence such as MPEG,JPEG,H.261,and so on.With BDCT method,higher compression ratios of image are achieved.But BDCT also brings some effects that will reduce the quality of images,and blocking artifacts are usually phenomena.Many existent de-blocking algorithm either blurred images or not achieved ideal result of de-blocking. Considered all of de-blocking and protection the information of high frequency,this paper presents a de-blocking algorithm with segmentation idea into MRF,by selecting different potential function in MRF according to different area:image edge,texture area, monotone area and block edge.We also have worked on the statistics of gray offset introduced by blocking artifacts and then have improved the computing method of MRF model,which greatly simples the compute process.Haven improved the methods of edge detection and image segmentation with quickly process.Experiments demonstrate that this algorithm can achieve a good result of the protection of high frequency information as well as better reduction of blocking artifacts ,and also with little process time.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第21期63-66,共4页 Computer Engineering and Applications
  • 相关文献

参考文献10

  • 1Reeve H C,Lim J S.Reduction of blocking effects in image coding[J].Opt Eng,23 (1):34-37.
  • 2Zakhor A.Iterative procedures for reduction of blocking effects in transform image coding[J].IEEE Trans Circuits Syst Video Technol,1992,2:91-95.
  • 3Yang Y,Galatsanos N P,Katsaggelos A K.Regularized reconstruction to reduce bloc king artifacts of bloc k discrete cosine transform compressed images[J].IEEE Trans Circults Sys Video Technol,1993(3):421-432.
  • 4O'Rourke T P,Stevenson R L.Improved image decompression for reduced transform coding artifacts[J].IEEE Trans Circuits Syst Video Technol,1995,5:490-499.
  • 5Canny J.A computational approach to edge detection[J].IEEE Trans Pattern Anal Machine Intell,1986,PAMI-8:679-698.
  • 6Li S Z.Markov random fields modeling in image analysis[M].Tokyo,2001.
  • 7Hammersley J M.CliflfOrd P.Markov fields of finite graphs and lattices[M].Unpublished Manuscript:Univ of Calif-Berkeley,1968.
  • 8Besag J.On the statistical analysis of dirty pictures[J].J Statist Soc B,1986,48 (3):259-279.
  • 9Minami S,Zakhor A.An optimization approach for removing blocking effects in transform coding[J].IEEE Trans Circuits Syst Video Technol,1995,5:74-82.
  • 10熊桢,童庆禧,郑兰芬.若干平滑和插值方法对图像空间分辨力估算的影响[J].遥感学报,2000,4(1):36-40. 被引量:6

二级参考文献7

共引文献5

同被引文献15

  • 1江巨浪,张佑生,薛峰,胡敏.保持图像亮度的局部直方图均衡算法[J].电子学报,2006,34(5):861-866. 被引量:64
  • 2Nayar S K, Narasimhan S G. Vision in bad weather[ C]// Proceedings of the Seventh IEEE International Conference on Computer Vision. 1999:820-827.
  • 3Narasimhan S G, Nayar S K. Chromatic framework for vi- sion in bad weather[ C 1// Proceedings of the IEEE Confer- ence on Computer Vision and Pattern Recognition. 2000: 598-605.
  • 4Tan R T. Visibility in bad weather from a single image [ C ]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2008:1-8.
  • 5Narasimhan S G, Nayar S K. Vision and the atmosphere [ J]. International Journal of Computer Vision, 2002,48 (3) :233-254.
  • 6Narasimhan S G, Nayar S K. Removing weather effects from monochrome images [ C]/! Proceedings of the IEEE Computer Society Conference on Computer Vision and Pat- tern Recognition. 2001:186-193.
  • 7Oakley J P, Satherley B L. Improving image quality in poor visibility conditions using a physical model for contrast degradation[ J]. IEEE Transactions on Image Processing, 1998,7(2) :167-179.
  • 8Narasimhan S G, Nayar S K. Contrast restoration of weath- er degraded images [ J 1- IEEE Trans. on Pattern Anal. Mach. Intell. , 2003,25(6) :713-724.
  • 9Sehechner Y Y, Narasimhan S G, Nayar S K. Instant de- hazing of images using polarization [ C :// Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2001:325-332.
  • 10Kim J H, Sim J Y, Kim C S. Single image dehazing based on contrast enhancement [ C ]// Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. 2011 : 1273-1276.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部