期刊文献+

无导数线搜索下Broyden-Like方法的全局收敛性

Proof of global convergence of broyden-like method with derivative-free line search
下载PDF
导出
摘要 针对文献[1]中提出的无导数线搜索的不足,给出一个新的无导数线搜索,并在此线搜索基础上,研究近似模下降拟牛顿算法所具有的一些性质,并证明了其全局收敛性。 The derivative-free line search in literature[l] has not been well defined. We thus have proposed a new derivative-free line search. Based on this line search, we shew some useful properties of the approximately norm descent quasi-Newton algorithm and reached some conclusions. We then proved the global convergence.
出处 《桂林电子科技大学学报》 2007年第2期119-122,共4页 Journal of Guilin University of Electronic Technology
关键词 非线性方程组 无导数线搜索 全局收敛性 nonlinear equations derivative-free line search global convergence
  • 相关文献

参考文献5

  • 1GRIEWANK A. The global convergence of Broyden-like methods with a suitable line search[J]. J. Austral. Math. Soc. Ser. B,1986,28:75- 92.
  • 2MORE J J, A Trangenstein. On the global convergence of Broyden's method [J]. Mathematic of Computation, 1976,30: 523-540.
  • 3DEMNIS J E, JR, J J MORE. A Characterization of superlinear convergence and its applications to quasi-Newton methods[J].Math. Comput, 1974,28 : 549- 560.
  • 4LI DONG-HUI. Global Convergent Broyden-Like Methods for Semismooth Equations and Applications to VIP, NCP and MCP[J]. Annals of Operations Research,2001,103:71-97.
  • 5杨余飞,李董辉.非光滑方程光滑Broyden方法的全局收敛性[J].湖南大学学报(自然科学版),2000,27(5):5-9. 被引量:2

二级参考文献11

  • 1李董辉.求解无约束最优化问题的非奇异Broyden算法的全局收敛性[J].计算数学,1995,17(3):321-330. 被引量:8
  • 2Chen X,Mathematics Computation,1998年,67期,519页
  • 3Li D H,Operations Research and Its Applications,1996年,186页
  • 4Qi L,SIAM J.Control and Optimization,1995年,38卷,402页
  • 5Zhou S Z,Recent Advances in Nonsmooth Optimization,1995年,459页
  • 6Chen X,Comp Optim Appl,1994年,3期,157页
  • 7Qi L,Math Programming,1993年,58期,353页
  • 8Qi L,Mathematicsof Operations Research,1993年,18卷,227页
  • 9Pang J S,SIAM J Optim,1993年,3期,443页
  • 10Han S P,Mathematics Operations Research,1992年,17卷,586页

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部